用户名: 密码: 验证码:
残余应力对金属材料局部腐蚀行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of residual stress on localized corrosion behavior of metallic materials
  • 作者:陈恒 ; 卢琳
  • 英文作者:CHEN Heng;LU Lin;Institute for Advanced Materials and Technology,University of Science and Technology Beijing;State Key Laboratory of Metal Material for Marine Equipment and Application;
  • 关键词:残余应力 ; 腐蚀电化学行为 ; 点蚀 ; 应力腐蚀 ; 微区电化学
  • 英文关键词:residual stress;;corrosion electrochemical behavior;;pitting;;stress corrosion;;localized electrochemistry
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学新材料技术研究院;海洋装备用金属材料及其应用国家重点实验室;
  • 出版日期:2019-07-17 10:45
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.303
  • 基金:国家重点研发计划资助项目(2018YFB0605502);; 国家自然科学基金联合基金资助项目(U1560104)
  • 语种:中文;
  • 页:BJKD201907012
  • 页数:11
  • CN:07
  • ISSN:10-1297/TF
  • 分类号:98-108
摘要
基于残余应力测试新方法与先进电化学测试技术的进展,围绕残余应力类型和大小对金属材料点蚀以及应力腐蚀行为的作用机理进行了总结和归纳.研究发现,尽管残余压应力对腐蚀行为的抑制作用得到了大量实验的证实,但是在不同条件下其作用方式以及机理不尽相同,并且与材料的结构特点以及腐蚀产物等密切相关.同时,残余拉应力的作用尚不明确,受到材料类型和其他因素耦合的严重影响.另外,在某些环境下,影响腐蚀行为的关键是残余应力梯度或残余应力的某个临界值.但是对有色金属的研究表明残余拉应力和压应力均会导致基体中位错和微应变等结构缺陷增加,进而促进点蚀敏感性,降低材料服役性能.最后,对目前研究存在的局限进行了讨论和展望.
        It has been generally recognized that the synergistic action of aggressive media and residual stress that arises during metals fabrication,processing,and service can affect the behavior of corrosion electrochemistry. However,due to the limitation of testing techniques,studies on the influence of residual stress and its synergistic effects with other factors on corrosion initiation and propagation are relatively rare and confined to macro levels. With the developments of residual stress measurements and local electrochemical methods,especially the application of localized electrochemical probe techniques,the effect of residual stress on corrosion electrochemical behavior in the micro-domain has been studied by many researchers in recent years. Based on new testing methods of residual stress and advanced electrochemical measurements,this paper mainly summarized the contents and progress of recent research on metallic materials pitting and stress corrosion behavior under different types and levels of residual stresses. For iron and steel materials,the inhibition of compressive residual stress on corrosion has been supported by many experiments,but it shows different roles and mechanisms in different conditions,closely correlating with material structure and corrosion product. In addition,research has demonstrated that tensile residual stress has different impacts on corrosion resistance in alkaline and acidic conditions and that the influence of tensile residual stress on corrosion,strongly influenced by material types and other coupling factors,is still uncertain. Moreover,some experimental results have also shown that residual stress gradient or its critical value is a significant contributor to corrosion behavior,and only when they are greater than a certain value can pitting or micro-cracks be significantly initiated. However,studies on nonferrous metals suggest that both tensile and compressive residual stresses reduce corrosion resistance because they can increase dislocation density and microstrain,and these structural defects increase the occurrence of active sites for pitting corrosion,thereby degrading performance. Finally,the limitations and prospect of current research were also presented in this paper.
引文
[1] Gong M. Metallic Corrosion Theory and Corrosion Control. Beijing:Chemical Industry Press,2009(龚敏.金属腐蚀理论及腐蚀控制.北京:化学工业出版社,2009)
    [2] Li X G. An Introduction to Corrosion and Protection of Materials.2nd ed. Beijing:China Machine Press,2017(李晓刚.材料腐蚀与防护概论. 2版.北京:机械工业出版社,2017)
    [3] Gutman. Mechanical Chemistry and Corrosion Protection of Metals.Beijing:Science Press,1989(古特曼.金属力学化学与腐蚀防护.北京:科学出版社,1989)
    [4] Rao S X,Zhu L Q,Li D,et al. Effects of mechanochemistry to the pitting behaviour of LY12CZ aluminum alloy. J Chin Soc Corros Prot,2007,27(4):228(饶思贤,朱立群,李荻,等.力学化学效应对LY12CZ铝合金点蚀行为的影响.中国腐蚀与防护学报,2007,27(4):228)
    [5] Gutman E M,Solovioff G,Eliezer D. The mechanochemical behaviour of type 316L stainless steel. Corros Sci,1996,38(7):1141
    [6] Xiao J M,Cao C N. Principle of Material Corrosion. Beijing:Chemical Industry Press,2002(肖纪美,曹楚南.材料腐蚀学原理.北京:化学工业出版社,2002)
    [7] Meng F J,Wang J Q,Han E,et al. The role of Ti N inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water. Corros Sci,2010,52(3):928
    [8] Xue H B,Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros Sci,2011,53(4):1201
    [9] Yan Y J,Yan Y,He Y,et al. Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment. Int J Hydrogen Energy,2015,40(5):2404
    [10] Zhang Z B,Obasi G,Morana R,et al. In-situ observation of hydrogen induced crack initiation in a nickel-based superalloy.Scripta Mater,2017,140:40
    [11] Shen Z,Arioka K,Lozano-Pereza S. A mechanistic study of SCC in Alloy 600 through high-resolution characterization. Corros Sci,2018,132:244
    [12] Zhou N,Pettersson R,Peng R L,et al. Effect of surface grinding on chloride induced SCC of 304L. Mater Sci Eng A,2016,658:50
    [13] Alvarez M G,Lapitz P,Ruzzante J. Analysis of acoustic emission signals generated from SCC propagation. Corros Sci,2012,55:5
    [14] Masuda H. SKFM observation of SCC on SUS304 stainless steel.Corros Sci,2007,49(1):120
    [15] Vignal V,Mary N,Oltra R,et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc,2006,153(9):B352
    [16] Oltra R,Vignal V. Recent advances in local probe techniques in corrosion research———Analysis of the role of stress on pitting sensitivity. Corros Sci,2007,49(1):158
    [17] Long F Y,Yang Y,Wang S L,et al. Microscale electrochemical measurement technology and its application in corrosion. Corros Sci Prot Technol,2015,27(2):194(龙凤仪,杨燕,王树立,等.微区电化学测量技术及其在腐蚀中的应用.腐蚀科学与防护技术,2015,27(2):194)
    [18] Vieira L,Lucas F L C,Fisssmer S F,et al. Scratch testing for micro-and nanoscale evaluation of tribocharging in DLC films containing silver nanoparticles using AFM and KPFM techniques.Surf Coat Technol,2014,260:205
    [19] Marques A G,Izquierdo J,Souto R M,et al. SECM imaging of the cut edge corrosion of galvanized steel as a function of pH.Electrochim Acta,2015,153:238
    [20] Mouanga M,Puiggali M,Devos O. EIS and LEIS investigation of aging low carbon steel with Zn-Ni coating. Electrochim Acta,2013,106:82
    [21] Simes A M,Bastos A C,Ferreira M G,et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell. Corros Sci,2007,49(2):726
    [22] Wang F Y,Mao K M,Li B. Prediction of residual stress fields from surface stress measurements. Int J Mech Sci,2018,140:68
    [23] Rae W,Lomas Z,Jackson M,et al. Measurements of residual stress and microstructural evolution in electron beam welded Ti-6Al--4V using multiple techniques. Mater Charact,2017,132:10
    [24] Kartal M E,Kiwanuka R,Dunne F P E. Determination of subsurface stresses at inclusions in single crystal superalloy using HR-EBSD,crystal plasticity and inverse eigenstrain analysis. Int J Solids Struct,2015,67-68:27
    [25] Salvati E,Korsunsky A M. An analysis of macro-and microscale residual stresses of Type I,II and III using FIB-DIC microring-core milling and crystal plasticity FE modelling. Int J Plast,2017,98:123
    [26] Withers P J. Residual stress and its role in failure. Rep Prog Phys,2007,70(12):2211
    [27] Song J K,Huang X B,Gao Y K. Test and analysis technology of residual stress. Surf Technol,2016,45(4):75(宋俊凯,黄小波,高玉魁.残余应力测试技术分析.表面技术,2016,45(4):75)
    [28] James M N. Residual stress influences on structural reliability.Eng Fail Anal,2011,18(8):1909
    [29] Withers P J,Bhadeshia H K D H. Residual stress Part 1--measurement techniques. Mater Sci Technol,2001,17(4):355
    [30] Pan L. Research on the Mechanisms and Related Experiments of Controlling Residual Stress in Carbon Steel based on Pulse Current Method[Dissertation]. Hangzhou:Zhejiang University,2016(潘龙.脉冲电流法调控碳钢残余应力的机理及相关实验研究[学位论文].杭州:浙江大学,2016)
    [31] Groth B P,Langan S M,Haber R A,et al. Relating residual stresses to machining and finishing in silicon carbide. Ceram Int,2016,42(1):799
    [32] Niku-Lari A. Residual Stresses. Oxford:Pergamon Press,1987
    [33] Huang X F,Liu Z W,Xie H M. Recent progress in residual stress measurement techniques. Acta Mech Solida Sin,2013,26(6):570
    [34] Wang N,Luo L,Liu Y,et al. Research progress on stress measurement technology for metal components. Chin J Sci Instrum,2017,38(10):2508(王楠,罗岚,刘勇,等.金属构件残余应力测量技术进展.仪器仪表学报,2017,38(10):2508)
    [35] Bemporad E,Brisotto M,Depero L E,et al. A critical comparison between XRD and FIB residual stress measurement techniques in thin films. Thin Solid Films,2014,572:224
    [36] Wang Q M,Sun Y. Research development on the test methods of residual stress. J Mech Electr Eng Mag,2011,28(1):11(王庆明,孙渊.残余应力测试技术的进展与动向.机电工程,2011,28(1):11)
    [37] Sun G A,Chen B. The technology and application of residual stress analysis by neutron diffraction. Nucl Tech,2007,30(4):286(孙光爱,陈波.中子衍射残余应力分析技术及其应用.核技术,2007,30(4):286)
    [38] Wilkinson A J,Meaden G,Dingley D J. High-resolution elastic strain measurement from electron backscatter diffraction patterns:new levels of sensitivity. Ultramicroscopy,2006,106(4-5):307
    [39] Huang Y M,Pan C X. Micro-stress-strain analysis in materials based upon EBSD technique:a review. J Chin Electron Microsc Soc,2010,29(1):1(黄亚敏,潘春旭.基于电子背散射衍射(EBSD)技术的材料微区应力应变状态研究综述.电子显微学报,2010,29(1):1)
    [40] Sato H,Shishido N,Kamiya S,et al. Local distribution of residual stress of Cu in LSI interconnect. Mater Lett,2014,136:362
    [41] Wen S,Dong A P,Lu Y L,et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting. Acta Metall Sin,2018,54(3):393(文舒,董安平,陆燕玲,等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟.金属学报,2018,54(3):393)
    [42] Bertali G,Scenini F,Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci,2016,111:494
    [43] Wu Q,Xie D J,Si Y,et al. Simulation analysis and experimental study of milling surface residual stress of Ti-10V--2Fe-3Al. J Manuf Processes,2018,32:530
    [44] Kayser W,Bezold A,Broeckmann C. EBSD-based FEM simulation of residual stresses in a WC6wt.--%Co hardmetal. Int J Refract Met Hard Mater,2018,73:139
    [45] Soltis J. Passivity breakdown,pit initiation and propagation of pits in metallic materials—review. Corros Sci,2015,90:5
    [46] Wang Y J,Han X P,Liu Y,et al. Effect of residual stress on corrosion sensitivity of carbon steel studied by SECM. Chem Res Chin Univ,2014,30(6):1022
    [47] Li M C,Cheng Y F. Corrosion of the stressed pipe steel in carbonate--bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochim Acta,2008,53(6):2831
    [48] Xiong Q R,Liu D X,Zhang G J,et al. Influence of residual tensile stress on stress corrosion behavior of the base metal of X80pipe//Proceedings of the ASME 2014 Pressure Vessels&Piping Conference. Anaheim,2014:V001T01A073
    [49] Xiong Q R,Li W W,Fu A Q,et al. Effect of residual stress on electrochemistry corrosion resistance of X80 UOE pipe. Rare Met Mater Eng,2012,41(Suppl 2):749(熊庆人,李为卫,付安庆,等.残余应力对X80 UOE钢管耐电化学腐蚀性能的影响.稀有金属材料工程,2012,41(增刊2):749)
    [50] Trethewey K R,Wenman M,Chard-Tuckey P,et al. Correlation of meso-and micro-scale hardness measurements with the pitting of plastically-deformed Type 304L stainless steel. Corros Sci,2008,50(4):1132
    [51] Martin F A,Bataillon C,Cousty J. In situ AFM detection of pit onset location on a 304L stainless steel. Corros Sci,2008,50(1):84
    [52] Lai W Y,Xu X,Bai Z Q,et al. Effect of residual tensile stresses on electrochemical corrosion behavior of 304 stainless steel.Mater Mech Eng,2016,40(2):84(来维亚,徐欣,白真权,等.残余拉应力对304不锈钢电化学腐蚀行为的影响.机械工程材料,2016,40(2):84)
    [53] Vignal V,Mary N,Oltra R,et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc,2006,153(9):B352
    [54] Nguyen T T,Bolivar J,Shi Y,et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation. Corros Sci,2018,132:146
    [55] Nam J Y,Seo D H,Lee S Y,et al. The effect of residual stress on the SCC using ANSYS. Procedia Eng,2011,10:2609
    [56] Bai L Y,Jiang K B,Gao L,et al. Influence mechanism of residual stress on stress corrosion behavior of welded structure. Hot Work Technol,2017,46(21):168(白林越,江克斌,高磊,等.残余应力对焊接结构应力腐蚀行为影响机理研究.热加工工艺,2017,46(21):168)
    [57] Toribio J. Role of crack-tip residual stresses in stress corrosion behavior of prestressing steel. Constr Build Mater,1998,12(5):283
    [58] Lu J Z,Luo K Y,Yang D K,et al. Effects of laser peening on stress corrosion cracking(SCC)of ANSI 304 austenitic stainless steel. Corros Sci,2012,60:145
    [59] Wei X L,Zhang C,Ling X. Effects of laser shock processing on corrosion resistance of AISI 304 stainless steel in acid chloride solution. J Alloys Compd,2017,723:237
    [60] Ghosh S,Rana V P S,Kain V,et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des,2011,32(7):3823
    [61] Zhang W Q,Fang K W,Hu Y J,et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corros Sci,2016,108:173
    [62] Van Boven G,Chen W,Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I:pitting and cracking occurrence. Acta Mater,2007,55(1):29
    [63] Gravier J,Vignal V,Bissey-Breton S. Influence of residual stress,surface roughness and crystallographic texture induced by machining on the corrosion behaviour of copper in salt-fog atmosphere. Corros Sci,2012,61:162
    [64] Pandey V,Singh J K,Chattopadhyay K,et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy. J Alloys Compd,2017,723:826
    [65] Chen T,John H,Xu J,et al. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1:effect of machine hammer peening. Corros Sci,2013,77:230
    [66] Zheng Y,Li Y,Chen J H,et al. Effects of tensile and compressive deformation on corrosion behavior of a Mg-Zn alloy. Corros Sci,2015,90:445
    [67] Bertali G,Scenini F,Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci,2016,111:494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700