用户名: 密码: 验证码:
淫羊藿苷对骨微血管内皮细胞自噬及外泌体产生的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of icariin on autophagy and exosome production of bone microvascular endothelial cells
  • 作者:张庆宇 ; 高福强 ; 程立明 ; 刘立华 ; 孙伟 ; 李子荣
  • 英文作者:ZHANG Qingyu;GAO Fuqiang;CHENG Liming;LIU Lihua;SUN Wei;LI Zirong;Graduate School of Peking Union Medical College;Department of Orthopedics, China-Japan Friendship Hospital;Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital;
  • 关键词:股骨头 ; 微血管内皮细胞 ; 糖皮质激素 ; 淫羊藿苷 ; 外泌体 ; 自噬
  • 英文关键词:Femoral head;;microvascular endothelial cells;;glucocorticoid;;icariin;;exosome;;autophagy
  • 中文刊名:ZXCW
  • 英文刊名:Chinese Journal of Reparative and Reconstructive Surgery
  • 机构:北京协和医学院研究生院;中日友好医院骨科;中日友好医院骨坏死与关节保留重建中心;
  • 出版日期:2019-04-17 09:49
  • 出版单位:中国修复重建外科杂志
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金资助项目(81672236、81802224、81871830);; 北京市自然科学基金资助项目(7174346、7182146);; 首都医学发展科研基金资助项目(CFH2018-4-40611);; 首都临床特色应用研究(Z181100001718058);; 中央高校基本科研业务费专项资金(3332018168);; 协和医学院研究生创新基金(2017-1002-2-26)~~
  • 语种:中文;
  • 页:ZXCW201905010
  • 页数:10
  • CN:05
  • ISSN:51-1372/R
  • 分类号:48-57
摘要
目的评估淫羊藿苷对低浓度糖皮质激素诱导的骨微血管内皮细胞(bone microvascular endothelial cells,BMECs)自噬和外泌体分泌的影响。方法从行全髋关节置换术切取的股骨头中分离BMECs,用一系列低浓度梯度氢化可的松(0、0.03、0.06、0.10 mg/mL)干预(设为A、B、C、D组),在此基础上再用5×10~(-5) mol/L淫羊藿苷干预(设为A1、B1、C1、D1组),24 h后采用Western blot检测自噬相关蛋白微管相关蛋白轻链3B(microtubule-associated protein 1 light chain 3B,LC3B)及死骨片1(p62)的表达。从经淫羊藿苷处理(干预组)和未经淫羊藿苷处理(未干预组)的BMECs中提取外泌体,纳米颗粒跟踪分析技术检测其直径和浓度,BCA法检测外泌体总蛋白质含量,Western blot检测外泌体CD9、CD81、TGF-β_1和VEGFA蛋白的表达。进一步将BMECs分为3组,实验组和对照组分别分离经或未经淫羊藿苷处理的BMECs分泌的外泌体,与BMECs共培养;空白对照组为单纯BMECs。氢化可的松处理后,采用Western blot检测LC3B和p62表达,划痕实验检测细胞迁移能力,并观察血管生成能力。结果随氢化可的松浓度升高,各组LC3B-Ⅱ蛋白相对表达量逐渐增加,p62蛋白相对表达量减少,各组间差异均有统计学意义(P<0.01);相同激素浓度下,淫羊藿苷干预后,LC3B-Ⅱ蛋白相对表达量减少,p62蛋白相对表达量增加(P<0.01)。干预组外泌体浓度显著高于未干预组(t=-10.191,P=0.001);两组外泌体直径和总蛋白质含量比较差异均无统计学意义(P>0.05)。未干预组和干预组CD9和CD81蛋白均高度表达;干预组VEGFA/CD9和TGF-β_1/CD9蛋白相对表达量比值均显著高于未干预组(P<0.01)。外泌体共培养后,空白对照组、对照组和实验组中p62蛋白相对表达量呈递增趋势,LC3B-Ⅱ蛋白相对表达量呈递减趋势,各组间比较差异均有统计学意义(P<0.05)。氢化可的松处理12、24 h时,对照组和实验组划痕闭合率明显高于空白对照组(P<0.05),实验组明显高于对照组(P<0.05);氢化可的松处理4、8 h时,实验组和对照组管腔数、出芽数和小管分支长度均显著大于空白对照组(P<0.05);实验组小管分支长度和管腔数显著大于对照组(P<0.05)。结论淫羊藿苷及BMECs产生的外泌体能改善低浓度激素诱导的BMECs自噬,对内皮细胞起到保护作用。
        Objective To evaluate the effects of icariin on autophagy induced by low-concentration of glucocorticoid and exosome production in bone microvascular endothelial cells(BMECs). Methods BMECs were isolated from femoral heads resected in total hip arthroplasty and then intervened with hydrocortisone of low concentration(0, 0.03, 0.06, 0.10 mg/mL), which were set as groups A, B, C, and D, respectively. On the basis of hydrocortisone intervention, 5×10~(-5) mol/L of icariin was added to each group(set as groups A1, B1, C1 and D1,respectively). Western blot was used to detect the expressions of microtubule-associated protein 1 light chain 3 B(LC3 B)and dead bone slice 1(p62) after 24 hours. Exosomes were extracted from BMECs treated with icariin(intervention group) and without icariin(non-intervention group), and the diameter and concentration of exosomes were evaluated by nanoparticle tracking analysis technique. The total protein content of exosomes was detected by BCA method, and the expressions of proteins carried by exosomes including CD9, CD81, transforming growth factor β_1(TGF-β_1), and vascular endothelial growth factor A(VEGFA) were assessed by Western blot. The BMECs were further divided into three groups:BMECs in the experimental group and the control group were co-cultured with exosomes secreted by BMECs treated with or without icariin, respectively; the blank control group was BMECs without exosome intervention. The three groups were treated with hydrocortisone and Western blot was used to detect the expressions of LC3 B and p62. The scratching assay was used to detect cell migration ability; angiogenic ability of BMECs was also assessed. Results With the increase of hydrocortisone concentration, the protein expression of LC3 B-Ⅱ increased gradually, and the protein expression of p62 decreased gradually(P<0.01). Compared with group with same concentration of hydrocortisone, the protein expression of LC3 B-Ⅱ decreased and the protein expression of p62 increased after the administration of icariin(P<0.01). The concentration of exosomes in the intervention group was significantly higher than that in the non-intervention group(t=-10.191, P=0.001); and there was no significant difference in exosome diameter and total protein content between the two groups(P>0.05). CD9 and CD81 proteins were highly expressed in the non-intervention group and the intervention group, and the relative expression ratios of VEGFA/CD9 and TGF-β_1/CD9 proteins in the intervention group were significantly higher than those in the non-intervention group(P<0.01). After co-culture of exosomes, the protein expression of p62 increased in blank control group, control group, and experimental group, while the protein expression of LC3 B-Ⅱ decreased. There were significant differences among groups(P<0.05). When treated with hydrocortisone for12 and 24 hours, the scratch closure rate of the control group and experimental group was significantly higher than that of the blank control group(P<0.05), and the scratch closure rate of the experimental group was significantly higher than that of the control group(P<0.05). When treated with hydrocortisone for 4 and 8 hours, the number of lumens, number of sprouting vessels, and length of tubule branches in the experimental group and the control group were significantly greater than those in the blank control group(P<0.05); the length of tubule branches and the number of lumens in the experimental group were significantly greater than those in the control group(P<0.05). Conclusion Icariin and BMECsderived exosomes can improve the autophagy of BMECs induced by low concentration of glucocorticoid.
引文
1 Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.Nature, 2014, 507(7492):323-328.
    2 Chandler FA. Coronary disease of the hip. 1949. Clin Orthop Relat Res, 2001,(386):7-10.
    3 Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin North Am, 2012, 41(3):595-611.
    4魏秋实,杨帆,陈哓俊,等.激素性与酒精性股骨头坏死患者骨标本坏死区域病理与显微结构特点分析.中国修复重建外科杂志,2018, 32(7):866-872.
    5 Kim KA, Shin D, Kim JH, et al. Role of autophagy in endothelial damage and blood-brain barrier disruption in ischemic stroke.Stroke, 2018,49(6):1571-1579.
    6 Grootaert MOJ, Roth L, Schrijvers DM, et al. Defective autophagy in atherosclerosis:to die or to senesce? Oxid Med Cell Longev,2018,2018:7687083.
    7 Zhu XR, Du JH. Autophagy:a potential target for the treatment of intraocular neovascularization. Int J Ophthalmol, 2018, 11(4):695-698.
    8 Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol, 2004, 36(12):2503-2518.
    9 de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cellderived exosomes. J Extracell Vesicles, 2012, 1. doi:10.3402/jev.vli0.18396.eCollection 2012.
    10 Hromada C, Miihleder S, Grillari J, et al. Endothelial extracellular vesicles-promises and challenges. Front Physiol, 2017, 8:275.
    11 Jiang Y, Xie H, Tu W, et al. Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing miR-21-3p. Am J Transl Res, 2018, 10(11):3529-3541.
    12 Liao Y, Zhang P, Yuan B, et al. Pravastatin protects against avascular necrosis of femoral head via autophagy. Front Physiol,2018, 9:307.
    13 Mata-Greenwood E, Jackson PN, Pearce WJ, et al. Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity. J Mol Endocrinol, 2015, 55(2):133-146.
    14 Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci, 2013, 34(9):518-530.
    15 Huang W, Glass CK. Nuclear receptors and inflammation control:molecular mechanisms and pathophysiological relevance.Arterioscler Thromb Vasc Biol, 2010, 30(8):1542-1549.
    16 Jia J, Yao W, Guan M, et al. Glucocorticoid dose determines osteocyte cell fate. FASEB J, 2011,25(10):3366-3376.
    17 Luo P, Gao F, Han J, et al. The role of autophagy in steroid necrosis of the femoral head:a comprehensive research review. Int Orthop,2018,42(7):1747-1753.
    18 Ezzat S, Louka ML, Zakaria ZM, et al. Autophagy in osteoporosis:Relation to oxidative stress. J Cell Biochem, 2018.[Epub ahead of print]
    19 Xia X, Kar R, Gluhak-Heinrich J, et al. Glucocorticoid-induced autophagy in osteocytes. J Bone Miner Res, 2010, 25(11):2479-2488.
    20杨雨润,娄晋宁,李子荣,等.糖皮质激素对骨髓微血管内皮细胞活性氧代谢影响的实验研究.中国修复重建外科杂志,2011,25(5):533-537.
    21 Chen R, Jiang M, Li B, et al. The role of autophagy in pulmonary hypertension:a double-edge sword. Apoptosis,2018, 23(9-10):459-469.
    22 Wu YY, Chen C, Yu X, et al. Effects of tiaozhi granule on regulation of autophagy levels in HUVECs. Evid Based Complement Alternat Med,2018,2018:1765731.
    23 Li C,Li Q, Mei Q, et al. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci, 2015, 126:57-68.
    24 Huang Z, Cheng C, Cao B, et al. Icariin protects against glucocorticoid-induced osteonecrosis of the femoral head in rats.Cell Physiol Biochem, 2018, 47(2):694-706.
    25 Zhao J, Ohba S, Shinkai M, et al. Icariin induces osteogenic differentiation in vitro in a BMP-and Runx2-dependent manner.Biochem Biophys Res Commun, 2008, 369(2):444-448.
    26 Chen KM, Ge BF, Liu XY, et al. Icariin inhibits the osteoclast formation induced by RANKL and macrophage-colony stimulating factor in mouse bone marrow culture. Pharmazie, 2007, 62(5):388-391.
    27 Hu Y, Li H, Liu K, et al. Protective effects of icariin on human vascular endothelial cells induced by oxidized low-density lipoprotein via modulating caspase-3 and Bcl-2. Mol Med Rep,2018,17(5):6835-6839.
    28王佰亮,李子荣,娄晋宁,等.淫羊藿苷对糖皮质激素诱导的骨微血管内皮细胞损伤的保护作用.中国微循环,2009, 13(6):461-464,封2.
    29 Mi B, Wang J, Liu Y, et al. Icariin activates autophagy via downregulation of the NF-κB signaling-mediated apoptosis in chondrocytes. Front Pharmacol,2018, 9:605.
    30 Jiang S, Chang H, Deng S, et al. Icariin inhibits autophagy and promotes apoptosis in SKVCR cells through mTOR signal pathway. Cell Mol Biol(Noisy-le-grand), 2018, 64(6):4-10.
    31 Hua W, Zhang Y, Wu X, et al. Icariin attenuates interleukin-1β-induced inflammatory response in human nucleus pulposus cells.Curr Pharm Des, 2018,23(39):6071-6078.
    32 Zeng L, Wang W, Rong XF, et al. Chondroprotective effects and multi-target mechanisms of Icariin in IL-1 beta-induced human SW 1353 chondrosarcoma cells and a rat osteoarthritis model. Int Immunopharmacol, 2014, 18(1):175-181.
    33 Ristorcelli E, Beraud E, Mathieu S, et al. Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. Int J Cancer, 2009, 125(5):1016-1026.
    34张静,易阳艳,阳水发,等.脂肪干细胞来源的外泌体对人脐静脉血管内皮细胞增殖、迁移及管样分化的影响.中国修复重建外科杂志,2018, 32(10):1351-1357.
    35 Zhao L, Luo H, Li X, et al. Exosomes derived from human pulmonary artery endothelial cells shift the balance between proliferation and apoptosis of smooth muscle cells. Cardiology,2017,137(1):43-53.
    36 Melo SA, Sugimoto H, O'Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 2014, 26(5):707-721.
    37 Castaneda-Cabral JL, Beas-Zarate C, Rocha-Arrieta LL, et al.Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients. J Neuroimmunol, 2019, 328:68-72.
    38 Wang L, Wang J, Wang F, et al.VEGF-mediated cognitive and synaptic improvement in chronic cerebral hypoperfusion rats involves autophagy process. Neuromolecular Med, 2017, 19(2-3):423-435.
    39 Domigan CK, Warren CM, Antanesian V, et al. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J Cell Sci, 2015,128(12):2236-2248.
    40 Mao YQ, Fan XM. Autophagy:A new therapeutic target for liver fibrosis. World J Hepatol, 2015, 7(16):1982-1986.
    41 Tong H, Yin H, Hossain MA, et al. Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-β1/Smad3-mediated epithelial-mesenchymal transition activation. J Cell Biochem, 2019,120(4):5118-5127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700