用户名: 密码: 验证码:
Ti811表面激光熔覆制备Ni基复合涂层的微观组织分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure of Ni-based Composite Layer Prepared by Laser Cladding on Ti811 Surface
  • 作者:张宏伟 ; 安通达 ; 张天刚 ; 王浩
  • 英文作者:ZHANG Hongwei;AN Tongda;ZHANG Tiangang;WANG Hao;Eng ineering Technology Training Center, Civil Aviation University of China;College of Aeronautical Engineering, Civil Aviation University of China;
  • 关键词:Ti811 ; 激光熔覆 ; TiC ; CeO_2 ; 显微硬度
  • 英文关键词:Ti811;;laser cladding;;TiC;;CeO_2;;microhardness
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:中国民航大学工程技术训练中心;中国民航大学航空工程学院;
  • 出版日期:2019-03-27 16:52
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.508
  • 基金:国家自然科学基金项目(U1633104,U1333121);; 中央高校科研基本业务费(3122017017)
  • 语种:中文;
  • 页:SJGY201906039
  • 页数:5
  • CN:06
  • ISSN:61-1133/TG
  • 分类号:169-172+178
摘要
在Ti811钛合金表面采用同步送粉技术,激光熔覆TC4+Ni45+NiCr-Cr_3C_2+CeO_2混合粉末,制备了Ni基激光熔覆涂层。利用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)和能谱分析仪(EDS)等手段分析了涂层的微观组织和相组成,利用显微硬度计测试了涂层的显微硬度。结果表明,涂层主要包括基底α-Ti、金属间化合物Ti_2Ni、硬质相TiC及TiB_2。熔体中加入稀土CeO_2,一方面促进初生树枝晶TiC的生长,另一方面增加共晶TiC的形核率并抑制其长大,最终,TiC在涂层中以树枝晶和等轴共晶两种形态存在。熔覆层的显微硬度最高达到1100 HV1.0,约为基底显微硬度的3倍。
        Ni-based laser cladding layer was fabricated by laser cladding TC4+Ni45+NiCr-Cr_3C_2+CeO_2 mixed powders on Ti811 titanium alloy substrate by synchronous powder feeding technology. Optical microscope(OM), X-ray diffractometer(XRD), scanning electron microscope(SEM) and energy dispersive spectrometer(EDS) were employed to analyze the microstructure and phase composition of the layer. The microhardness of the layer was measured by Vickers hardness tester.The results indicate that the layer is mainly composed of α-Tisubstrate, Ti_2Ni intermetallic compound, TiC and TiB_2 reinforcements. The addition of rare earth CeO_2 to the melt can promote the growth of primary dendritic TiC. On the other hand, the nucleation rate of eutectic TiC increases and its growth is inhibited. Finally, TiC appears in the form of dendrites and equiaxial eutectic in the layer. The highest microhardness of the layer is up to 1100 HV1.0, which is about 3 times of the substrate.
引文
[1]Zhang X,Liu D.Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature[J].稀有金属(英文版),2009,28(3):266-271.
    [2]张天刚,孙荣禄.Ti811表面原位生成纳米Ti3Al激光熔覆层摩擦磨损性能研究[J].中国激光,2017(9):1-15.
    [3]Li Jianing.Analysis of microstructure performance of laser clad Ti3Al matrix composite coating on aviation titanium alloy[J].Aeronautical Manufacturing Technology,2013(8):78-79.
    [4]Weng F,Yu H,Chen C,et al.Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy[J].Journal of Alloys&Compounds,2017,692:989-996.
    [5]范红梅,刘海青,孟祥军,等.Ti6Al4V合金激光熔覆镍基高温自润滑耐磨复合涂层研究[J].材料导报,2013,27(24):102-105.
    [6]吕维洁,张小农,张荻,等.原位合成TiB/Ti基复合材料增强体的生长机制[J].金属学报,2000,36(1):104-108.
    [7]刘阳,曾令可.碳化钛陶瓷及应用[M].北京:化学工业出版社,2008.
    [8]张喜燕,赵永庆,白晨光.钛合金及应用[J].北京:机械工业出版社,2005.
    [9]李瑞峰.镍基非晶复合涂层的半导体激光制备及表征[D].上海:上海交通大学,2013.
    [10]王长生,于晖.氧化铈添加量对M80S20激光涂敷层的显微组织和摩擦学性能的影响[J].摩擦学学报,1997,17(1):17-24.
    [11]余宗森.钢中稀土[M].北京:冶金工业出版社,1982.
    [12]许伯藩,李安敏,潘应君,等.Ce O2对激光熔覆TiCP/Ni基复合涂层的影响[J].热加工工艺,2002,31(6):10-12.
    [13]章桥新.TiB2的价电子结构及其性能研究[J].陶瓷学报,2000,21(3):159-161.
    [14]尚丽娟,才庆魁,刘常升,等.用稀土改性钴基合金激光熔覆层[J].稀有金属,2002,26(3):173-178.
    [15]谢希文,过梅雨.材料科学基础[M].北京:北京航空学院出版社,1999.
    [16]Feng S R,Tang H B,Zhang S Q,et al.Microstructure and wear resistance of laser clad TiB-TiC/TiNi-Ti2Ni intermetallic coating on titanium alloy[J].Transactions of Nonferrous Metals Society of China,2012,22(7):1667-1673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700