用户名: 密码: 验证码:
输电塔既有涂层与新涂层受风沙侵蚀的损伤机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Damage Mechanism of Existing Coating and New Coating of Transmission Towers Eroded by Wind-blown Sand
  • 作者:郝贠洪 ; 李洁 ; 刘永利
  • 英文作者:HAO Yunhong;LI Jie;LIU Yongli;School of Civil Engineering,Inner Mongolia University of Technology;The Inner Mongolia Key Laboratory of Civil Engineering Structure and Mechanics,Inner Mongolia University of Technology;
  • 关键词:输电铁塔杆件涂层 ; 风沙环境 ; 冲蚀 ; 损伤机理
  • 英文关键词:coating of transmission tower bar;;sand drift environment;;erosion;;damage mechanism
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:内蒙古工业大学土木工程学院;内蒙古工业大学内蒙古自治区土木工程结构与力学重点实验室;
  • 出版日期:2019-04-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(11862022; 11162011; 51468049; 11662012);; 国家电网公司科技项目(GCB51201602754)~~
  • 语种:中文;
  • 页:CLDB201908027
  • 页数:6
  • CN:08
  • ISSN:50-1078/TB
  • 分类号:142-147
摘要
对输电铁塔杆件新镀锌涂层和既有镀锌涂层进行风沙冲蚀磨损试验,对比分析了两种不同镀锌涂层的冲蚀损伤规律。采用扫描电子显微镜和激光共聚焦显微镜观测两种涂层的不同冲蚀磨损微观形貌,分析了两种涂层材料受风沙冲蚀的损伤机理。研究表明:冲蚀速度越高,两种涂层的冲蚀率越大,且既有涂层的冲蚀率在相同的冲蚀条件下比新镀锌涂层的冲蚀率要高500×10~(-5)~2 750×10~(-5)mg/g;两种涂层在冲蚀角度α为35~37°时出现了最大冲蚀率,分别为2.5×10~(-5)mg/g(新涂层)和0.014 mg/g(既有涂层)。两种涂层在冲蚀角度α=90°时冲蚀率最小,分别为0.5×10~(-5)mg/g(新涂层)和700×10~(-5)mg/g(既有涂层);两种涂层的冲蚀形貌是从低角度的犁沟型冲蚀沟发展到冲蚀沟和冲蚀坑并存,再到高角度仅存的冲蚀坑形貌。风沙流对输电铁塔杆件新镀锌涂层和既有镀锌涂层的冲蚀磨损过程大致相同,既有镀锌涂层的冲蚀坑和带状冲蚀沟比新镀锌涂层更深、更长,且表面更加粗糙。
        The wind-blown sand erosion and wear tests on the new galvanized coating and existing galvanized coating of transmission tower bar were carried out in this study,and comparative analysis on the erosive damage law of the two types of galvanized coating was conducted as well.Scanning electron microscope and laser scanning confocal microscope were adopted to observe the micro-structures of erosive wear on these two kind of coatings,and analyze their mechanisms of sand erosion and damage. Research results indicated that higher erosion velocity contributed to enlarge the erosion rate of the coatings. Under the same erosion condition,the erosion rate of the existing galvanized coating was 500×10~(-5) mg/g to 2 750×10~(-5) mg/g higher than that of the new galvanized coating. When α was 35—37°,both of the coatings exhibited the highest rate of erosion,which were 2. 5×10~(-5) mg/g( new coating) and 0. 014 mg/g( existing coating),respectively. When α = 90°,both of the coatings presented the lowest rate of erosion,which were 0. 5×10~(-5) mg/g( new coating) and 700×10~(-5) mg/g( existing coating),respectively. Erosion morphology of these two coatings developed from the low-angle erosion gullies to the coexistence of erosion gullies and erosion pits,and finally only scour pits remained at the high angle. There were primarily the same erosion and wear process of wind-drift sand on the new galvanized coating and existing galvanizes coating of transmission tower,while existing galvanized coating showed deeper and longer erosion pits and zonal erosion gullies,as well as rougher surface than new galvanized coating.
引文
1 Huang Ning,Zheng Xiaojing.Mechanics in Engineering,2007,29(4),10(in Chinese).黄宁,郑晓静.力学与实践,2007,29(4),10.
    2 Gao Tao,Xu Yongfu,Yu Xiao.Journal of Arid Land Resources and Environment,2004(Z1),220(in Chinese).高涛,徐永福,于晓.干旱区资源与环境,2004(Z1),220.
    3 Wang Shigong,Dong Guangrong,Chen Huizhong,et al.Journal of Desert Research,2000,20(4),349.(in Chinese).王式功,董光荣,陈惠忠,等.中国沙漠,2000,20(4),349.
    4 Naveed M,Renteria A F,Nebel D,et al.Wear,2015,342-343,391.
    5 Hao Yunhong,Xing Yongming,Zhao Yanru,et al.Journal of Building Meterials,2011,14(3),345(in Chinese).郝贠洪,邢永明,赵燕茹,等.建筑材料学报,2011,14(3),345.
    6 Deng Wen,Zhao Xiaoqin,Li Shuangjian,et al.China Surface Engineering,2017,9(3),1(in Chinese).邓雯,赵小琴,李双健,等.中国表面工程,2017,9(3),1.
    7 Hao Yunhong,Liu Yongli,Xing Yongming,et al.China Surface Engineering,2017,30(1),56(in Chinese).郝贠洪,刘永利,邢永明,等.中国表面工程,2017,30(1),56.
    8 Wen Shizhu.Tribology,2008,28(1),1(in Chinese).温诗铸.摩擦学学报,2008,28(1),1.
    9 Dong Gang,Wan Jin,Jiu Yuan,et al.Journal of Materials Science&Engineering,2004,2(6),909(in Chinese).董刚,万金,九渊,等.材料科学与工程学报,2004,2(6),909.
    10 Dai Tinghai,Liu Bing,Zhang Dongqin,et al.Foundry Technology,2010,1(8),1017(in Chinese).代廷海,刘炳,张东芹,等.铸造技术,2010,1(8),1017.
    11 Hao Yunhong,Ren Ying,Duan Guolong,et al.Tribology,2014,7(4),357(in Chinese).郝贠洪,任莹,段国龙,等.摩擦学学报,2014,7(4),357.
    12 Hao Yunhong,Ya Ruhan,Li Hui,et al.Materials Review B:Research Papers,2018,32(4),1380(in Chinese).郝贠洪,雅茹罕,李慧,等.材料导报:研究篇,2018,32(4),1380.
    13 Dong Gang,Zhang Jiuyuan.Journal of Materials Science and Engineering,2003,21(2),307(in Chinese).董刚,张九渊.材料科学与工程学报,2003,21(2),307.
    14 Gránásy L.China Surface Engineering,2004,3(9),645.
    15 Xu Weisheng,He Guangyu,Cai Zhenbing,et al.China Surface Engineering,2017,23(4),1(in Chinese).徐伟胜,何光宇,蔡振兵,等.中国表面工程,2017,9(3),1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700