用户名: 密码: 验证码:
突扩管道流动加速腐蚀模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation study on flow-accelerated corrosion of sudden expansion pipeline
  • 作者:林彤 ; 周克毅 ; 司晓东
  • 英文作者:LIN Tong;ZHOU Keyi;SI Xiaodong;School of Energy and Environment, Southeast University;
  • 关键词:流动加速腐蚀 ; 突扩管 ; 流场分布 ; 入口流速 ; 腐蚀速率 ; 突扩比 ; 传质系数
  • 英文关键词:flow-accelerated corrosion;;sudden expansion pipeline;;flow field distribution;;inlet velocity;;corrosion rate;;sudden expansion ratio;;mass transfer coefficient
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:东南大学能源与环境学院;
  • 出版日期:2019-04-03 08:44
  • 出版单位:热力发电
  • 年:2019
  • 期:v.48;No.389
  • 基金:国家自然科学基金项目(51676035)~~
  • 语种:中文;
  • 页:RLFD201904007
  • 页数:7
  • CN:04
  • ISSN:61-1111/TM
  • 分类号:45-51
摘要
本文利用Fluent软件模拟突扩管下游的流场分布情况,通过改变入口流速和管道突扩比,得到不同条件下管道下游传质系数的分布规律;基于建立的数学模型,得到突扩管下游的传质系数、腐蚀速率与入口流速、管道突扩比之间的关系。结果表明:入口流速一定时,突扩管下游的传质系数和腐蚀速率随着突扩比的增大呈增大趋势,并且峰值位置均向流动方向偏移;突扩比一定时,突扩管下游的传质系数和腐蚀速率随着流速的增大而增大,峰值位置向流动方向移动;模拟结果和实验结果基本吻合。
        The Fluent software is used to simulate the flow field distribution at downstream of the sudden expansion pipeline. By changing the inlet velocity and the pipe expansion ratio, the distribution law of the mass transfer coefficient at downstream of the pipeline under different conditions is obtained. Based on the established mathematical model, the change laws of the mass transfer coefficient and corrosion rate at downstream of the sudden expansion tube with the inlet velocity and pipe expansion ratio is obtained. The results show that, when the inlet velocity is constant, the mass transfer coefficient and corrosion rate at downstream of the sudden expansion pipe increases with the sudden expansion ratio, and the peak position moves to the flow direction.When the pipeline sudden expansion ratio is constant, the mass transfer coefficient and corrosion rate at downstream of the sudden expansion pipeline increase with the velocity, and the peak position moves to the downstream of the pipeline. The simulation results are basically consistent with the experimental results.
引文
[1]TRUONG T C,LEE J R.Thickness reconstruction of nuclear power plant pipes with flow-accelerated corrosion damage using laser ultrasonic wavenumber imaging[J].Structural Health Monitoring,2017,17:255-265.
    [2]SHIN J,SON H,HEO G.Cyber security risk evaluation of a nuclear I&C using BN and ET[J].Nuclear Engineering and Technology,2017,49(3):517-524.
    [3]BAI W,DUAN Q,ZHANG Z.Numerical investigation on cavitation within letdown orifice of PWR nuclear power plant[J].Nuclear Engineering and Design,2016,305:230-245.
    [4]BURIN R P,BERTONI F,DAVIDSEN C,et al.Optimization of regional water-power systems under cooling constraints and climate change[J].Energy,2018,155:484-494.
    [5]GANGO P.Numerical boron mixing studies for Loviisa nuclear power plant[J].Nuclear Engineering&Design,1995,177(1):239-254.
    [6]HUANG C M,NUNEZ D,COBURN J,et al.Risk of tin whiskers in the nuclear industry[J].Microelectronics Reliability,2018,81:22-30.
    [7]NISHIKAWA M,KATO T,HOMMA T,et al.Changes in risk perceptions before and after nuclear accidents:Evidence from Japan[J].Environmental Science&Policy,2016,55:11-19.
    [8]张国军.电站汽水系统流动加速腐蚀机理及对策研究[D].北京:华北电力大学,2014:26.ZHANG Guojun.Flow-accelerated corrosion mechanism and countermeasures of power station steam and water system[D].Beijing:North China Electric Power University,2014:26.
    [9]潘向烽.碱化剂对核电厂二回路管道材料流动加速腐蚀的影响研究[D].上海:上海交通大学,2014:37.PAN Xiangfeng.Effect of alkalizers on flow-accelerated corrosion of pipeline materials in the secondary circuit of nuclear power plant[D].Shanghai:Shanghai Jiao Tong University,2014:37.
    [10]ZINKLE S J,BUSBY J T.Structural materials for fission&fusion energy[J].Materials Today,2009,12(11):12-19.
    [11]刘忠,刘春波,郑玉贵.碳钢在单相流中流动加速腐蚀的数值模拟[J].核动力工程,2009,30(5):48-53.LIU Zhong,LIU Chunbo,ZHENG Yugui.Numerical simulation of flow-acceleration corrosion of carbon steel in single-phase flow[J].Nuclear Power Engineering,2009,30(5):48-53.
    [12]KAZUTOSHI F,MASAFUMI D,KIMITOSHI Y,et al.Model of physic-chemical effect on flow accelerated corrosion in power plant[J].Corrosion Science,2011,53:3526-3533.
    [13]WILLEY J D,POWELL J P,AVERY G B,et al.Use of experimentally determined Henry’s Law and salting-out constants for ethanol in seawater for determination of the saturation state of ethanol in coastal waters[J].Chemosphere,2017,182:426-432.
    [14]GEBURTIG D,PREUSTER P,BOSMANN A,et al.Chemical utilization of hydrogen from fluctuating energy sources:catalytic transfer hydrogenation from charged liquid organic hydrogen carrier systems[J].International Journal of Hydrogen Energy,2016,41(2):1010-1017.
    [15]Atomic Energy Society of Japan.Handbook of water chemistry of nuclear reactor system[M].Tokyo:Corona Publishing,2000:57.
    [16]PRASAD M,GOPIKA V,SRIDHARAN A,et al.Pipe wall thickness prediction with CFD based mass transfer coefficient and degradation feedback for flow accelerated corrosion[J].Progress in Nuclear Energy,2018,107:205-214.
    [17]TAKANO T,UCHIYAMA K,YAMAGATA T,et al.Influence of swirling flow on mass and momentum transfer downstream of a pipe with elbow and orifice[J].International Journal of Heat and Mass Transfer,2016,92:394-402.
    [18]RANI H P,DIVYA T,SAHAYA R R,et al.CFD study of flow accelerated corrosion in 3D elbows[J].Annals of Nuclear Energy,2014,69:344-351.
    [19]FUJISAWA N,UCHIYAMA K,YAMAGATA T.Mass transfer measurements on periodic roughness in a circular pipe and downstream of orifice[J].International Journal of Heat and Mass Transfer,2017,105:316-325.
    [20]FAKOUR M,VAHABZADEH A,GANJI D D,et al.Analytical study of micro-polar fluid flow and heat transfer in a channel with permeable walls[J].Journal of Molecular Liquids,2015,204:198-204.
    [21]OPHEK L,NIR O,SEGAL H,et al.Temperature dependent boron permeability through reverse-osmosis membranes:implications for full-scale simulations[J].Desalination&Water Treatment,2017,68:23-31.
    [22]ZHU X L,ZHU L X,LU X F,et al.A novel method to determine flow-accelerated corrosion rate based on fluid structure interaction[J].Materials and Corrosion,2014,65(11):1120-1127.
    [23]POULSON B.Complexities in predicting the erosion corrosion[J].Wear,1999,233/235:497-504.
    [24]黄长久,刘小兵,欧顺冰,等.圆管突扩实验及数值模拟分析[J].中国农村水利水电,2015(9):144-146.HUANG Changjiu,LIU Xiaobing,OU Shunbing,et al.An experimental study and numerical simulation of sudden enlargement in circular pipes[J].China Rural Water and Hydropower,2015(9):144-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700