用户名: 密码: 验证码:
基于多尺度均匀化理论的页岩强度表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shale strength characterization based on the multi-scale homogenization theory
  • 作者:韩强 ; 屈展 ; 叶正寅
  • 英文作者:Han Qiang;Qu Zhan;Ye Zhengyin;College of Petroleum Engineering,Xi'an Shiyou University;Shaanxi Key Laboratory of Well Stability and Fluid & Rock Mechanics in Oil and Gas Reservoirs;School of Aeronautics,Northwest Polytechnical University;
  • 关键词:页岩 ; 多尺度 ; 强度均匀化 ; 数值模拟 ; 表征方法
  • 英文关键词:shale;;multi-scale;;strength homogenization;;numerical simulation;;characterization method
  • 中文刊名:SYXB
  • 英文刊名:Acta Petrolei Sinica
  • 机构:西安石油大学石油工程学院;陕西省油气井及储层渗流与岩石力学重点实验室;西北工业大学航空学院;
  • 出版日期:2019-07-15
  • 出版单位:石油学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(No.51704233,No.51674200);; 中国博士后科学基金项目(2017M613207)资助
  • 语种:中文;
  • 页:SYXB201907011
  • 页数:8
  • CN:07
  • ISSN:11-2128/TE
  • 分类号:104-111
摘要
页岩强度是页岩油气开发所必需的基础技术参数,目前宏观室内实验和测井解释在制样、参数连续解释等方面存在困难。为实现页岩多尺度强度的有效评价,基于最大塑性耗散能原理,并结合微观多孔介质理论建立了页岩微/细观强度均匀化Π函数模型。根据页岩微观力学测试评价了纯黏土矿物的基本力学属性,开展了页岩微/细观力学测试的数值模拟,并通过量纲分析求解页岩微/细观硬度-强度模型。结果表明,微观尺度下的黏土堆积密度对强度参数影响显著,细观尺度下受非黏土夹杂相的影响,硬度和内聚系数的比值与摩擦系数正相关。开展了页岩细观力学实验,根据模型求解结果开展页岩宏观强度预测。以常规实验结果作为约定真值进行归一化比对分析的结果显示,页岩内摩擦角的归一化均值为1.12,内聚力的归一化均值为1.21。页岩强度表征新体系为有效解决页岩油气开发提供了依据。
        Shale strength is a basic technical parameter required for shale oil and gas development.At present,macroscopic laboratory test and logging interpretation have problems with sample preparation and discontinuous interpretation of parameters.To effectively evaluate shale multi-scale strength,the micro/meso-strength homogenization Π function models of shale were established based on the principle of maximum plastic dissipation energy and the theory of microscopic porous media.The basic mechanical properties of pure clay minerals were evaluated by shale micromechanical test.Meanwhile,the numerical simulation of shale micro/meso-mechanical test was performed.Micro/meso scale hardness-strength model was solved by dimensional analysis.The results demonstrate that the clay packing density has a significant influence on strength at a micro scale.Under the influence of non-clay inclusions,the ratio of hardness and internal cohesion coefficient is positively correlated to friction coefficient at a meso scale.According to the shale meso-mechanical test,the prediction of shale macro strength parameters was performed based on model solutions.The normalized comparison analysis was conducted considering the common lab results as conventional true value.The results show that the normalized mean value of the friction angle is 1.12,and that of the cohesion is 1.21.The established system on shale strength characterization can provide basis for effectively solving oil and gas development.
引文
[1]MA Xinhua,XIE Jun.The progress and prospects of shale gas exploration and development in southern Sichuan Basin,SW China[J].Petroleum Exploration and Development,2018,45(1):172-182.
    [2]朱汉卿,贾爱林,位云生,等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报,2018,39(4):391-401.ZHU Hanqing,JIA Ailin,WEI Yunsheng,et al.Pore structure and supercritical methane sorption capacity of organic-rich shales in southern Sichuan Basin[J].Acta Petrolei Sinica,2018,39(4):391-401.
    [3]王玉满,徐波,李新景,等.川东北地区下志留统龙马溪组上升洋流相页岩沉积特征[J].石油学报,2018,39(10):1092-1102.WANG Yuman,XU Bo,LI Xinjing,et al.Sedimentary characteristics of upwelling facies shale in Lower Silurian Longmaxi Formation,northeast Sichuan area[J].Acta Petrolei Sinica,2018,39(10):1092-1102.
    [4]郑哲敏.关于中国页岩气持续开发工程科学研究的一点认识[J].科学通报,2016,61(1):34-35.ZHENG Zhemin.A little knowledge about the scientific research on the continuous development of shale gas in China[J].Chinese Science Bulletin,2016,61(1):34-35.
    [5]陈勉,葛洪魁,赵金洲,等.页岩油气高效开发的关键基础理论与挑战[J].石油钻探技术,2015,43(5):7-14.CHEN Mian,GE Hongkui,ZHAO Jinzhou,et al.The key fundamentals for the efficient exploitation of shale oil and gas and its related challenges[J].Petroleum Drilling Techniques,2015,43(5):7-14.
    [6]HENG Shuai,GUO Yingtong,YANG Chunhe,et al.Experimental and theoretical study of the anisotropic properties of shale[J].International Journal of Rock Mechanics and Mining Sciences,2015,74:58-68.
    [7]庄茁,柳占立,王涛,等.页岩水力压裂的关键力学问题[J].科学通报,2016,61(1):72-81.ZHUANG Zhuo,LIU Zhanli,WANG Tao,et al.The key mechanical problems on hydraulic fracture in shale[J].Chinese Science Bulletin,2016,61(1):72-81.
    [8]苟启洋,徐尚,郝芳,等.纳米CT页岩孔隙结构表征方法---以JY-1井为例[J].石油学报,2018,39(11):1253-1261.GOU Qiyang,XU Shang,HAO Fang,et al.Characterization method of shale pore structure based on nano-CT:a case study of Well JY-1[J].Acta Petrolei Sinica,2018,39(11):1253-1261.
    [9]徐春露,孙建孟,董旭,等.页岩气储层孔隙压力测井预测新方法[J].石油学报,2017,38(6):666-676.XU Chunlu,SUN Jianmeng,DONG Xu,et al.A new pore pressure logging prediction method in shale gas reservoirs[J].Acta Petrolei Sinica,2017,38(6):666-676.
    [10]姚光华,熊伟,胥云,等.预加压测试页岩含气量新方法[J].石油学报,2017,38(10):1189-1193.YAO Guanghua,XIONG Wei,XU Yun,et al.A new method of pre-pressurized test on shale gas content[J].Acta Petrolei Sinica,2017,38(10):1189-1193.
    [11]罗荣,曾亚武,杜欣.非均质岩石材料宏细观力学参数的关系研究[J].岩土工程学报,2012,34(12):2331-2336.LUO Rong,ZENG Yawu,DU Xin.Relationship between macroscopic and mesoscopic mechanical parameters of inhomogenous rock material[J].Chinese Journal of Geotechnical Engineering,2012,34(12):2331-2336.
    [12]韩强,屈展,叶正寅.页岩多尺度力学特性研究现状[J].应用力学学报,2018,35(3):564-570.HAN Qiang,QU Zhan,YE Zhengyin.Research status of shale multi-scale mechanical properties[J].Chinese Journal of Applied Mechanics,2018,35(3):564-570.
    [13]ULM F J,DELAFARGUE A,CONSTANTINIDES G.Experimental microporomechanics[M]∥DORMIEUX L,ULM F J.Applied Micromechanics of Porous Materials.Vienna:Springer,2005:207-288.
    [14]ULM F J,ABOUSLEIMAN Y.The nanogranular nature of shale[J].Acta Geotechnica,2006,1(2):77-88.
    [15]ULM F J,VANDAMME M,BOBKO C,et al.Statistical indentation techniques for hydrated nanocomposites:concrete,bone,and shale[J].Journal of the American Ceramic Society,2007,90(9):2677-2692.
    [16]CASTAEDA P P.Second-order homogenization estimates for nonlinear composites incorporating field fluctuations:II-applications[J].Journal of the Mechanics and Physics of Solids,2002,50(4):759-782.
    [17]SANAHUJA J,DORMIEUX L,CHANVILLARD G.Modelling elasticity of a hydrating cement paste[J].Cement and Concrete Research,2007,37(10):1427-1439.
    [18]ORTEGA J A,ULM F J,ABOUSLEIMAN Y.The effect of the nanogranular nature of shale on their poroelastic behavior[J].Acta Geotechnica,2007,2(3):155-182.
    [19]ORTEGA J A,ULM F J,ABOUSLEIMAN Y.The nanogranular acoustic signature of shale[J].Geophysics,2009,74(3):D65-D84.
    [20]CHENG Y T,CHENG Chemin.Scaling,dimensional analysis,and indentation measurements[J].Materials Science and Engineering:R:Reports,2004,44(4/5):91-149.
    [21]ORTEGA J A,GATHIER B,ULM F J.Homogenization of cohesive-frictional strength properties of porous composites:linear comparison composite approach[J].Journal of Nanomechanics and Micromechanics,2011,1(1):11-23.
    [22]张研,张子明.材料细观力学[M].北京:科学出版社,2008:52-56.ZHANG Yan,ZHANG Ziming.Mesomechanics of materials[M].Beijing:Science Press,2008:52-56.
    [23]DORMIEUX L,KONDO D,ULM F J.Microporofracture and damage mechanics[M]∥DORMIEUX L,KONDO D,ULM F J.Microporomechanics.Washington:John Wiley&Sons,Ltd,2006:291-318.
    [24]SALENON J.Introduction to the yield design theory and its applications to soil mechanics[J].European Journal of Mechanics A-Solids,1990,9(5):477-500.
    [25]CASTAEDA P P.New variational principles in plasticity and their application to composite materials[J].Journal of the Mechanics and Physics of Solids,1992,40(8):1757-1788.
    [26]FRITSCH A,DORMIEUX L,HELLMICH C,et al.Micromechanics of crystal interfaces in polycrystalline solid phases of porous media:fundamentals and application to strength of hydroxyapatite biomaterials[J].Journal of Materials Science,2007,42(21):8824-8837.
    [27]MAALEJ Y,DORMIEUX L,SANAHUJA J.Micromechanical approach to the failure criterion of granular media[J].European Journal of Mechanics-A/Solids,2009,28(3):647-653.
    [28]DESRUES J.Limitations du choix de l’angle de frottement pour le critère de plasticitéde Drucker-Prager[J].Revue Fran9aise de Génie Civil,2002,6(5):853-862.
    [29]HAN Qiang,QU Zhan,YE Zhengyin.Research on the mechanical behaviour of shale based on multiscale analysis[J].Royal Society Open Science,2018,5(10):181039.
    [30]张研韩林.细观力学基础[M].北京:科学出版社,2014:216-219.ZHANG Yan,HAN Lin.Foundation of mesomechanics[M].Beijing:Science Press,2014:216-219.
    [31]BOBKO C P,GATHIER B,ORTEGA J A,et al.The nanogranular origin of friction and cohesion in shale-A strength homogenization approach to interpretation of nanoindentation results[J].International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(17):1854-1876.
    [32]SANAHUJA J,DORMIEUX L.Strength of a porous medium with a heterogeneous solid phase[J].Comptes Rendus Mecanique,2005,11(11):818-823.
    [33]CHOLLACOOP N,DAO M,SURESH S.Depth-sensing instrumented indentation with dual sharp indenters[J].Acta Materialia,2003,51(13):3713-3729.
    [34]CHENG Y T,CHENG Chemin.Analysis of indentation loading curves obtained using conical indenters[J].Philosophical Magazine Letters,1998,77(1):39-47.
    [35]GANNEAU F P,CONSTANTINIDES G,ULM F J.Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials[J].International Journal of Solids and Structures,2006,43(6):1727-1745.
    [36]HAN Qiang,CHEN Ping,MA Tianshou.Influencing factor analysis of shale micro-indentation measurement[J].Journal of Natural Gas Science and Engineering,2015,27:641-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700