用户名: 密码: 验证码:
黑龙江多宝山—铜山斑岩铜(钼)矿床绿帘石矿物成分特征及其成矿指示意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mineral composition of epidote in Duobaoshan—Tongshan porphyry Cu-Mo deposit,Heilongjiang and its implications for mineralization
  • 作者:张佳佳 ; 王建 ; 李研 ; 李爱 ; 郭翟蓉
  • 英文作者:ZHANG Jia-jia;WANG Jian;LI Yan;LI Ai;GUO Zhai-rong;College of Earth Sciences,Jilin University;No.240 Institute of Nuclear Industry;
  • 关键词:绿帘石 ; 矿物化学 ; 多宝山 ; 铜山 ; 斑岩铜(钼)矿床 ; 成矿
  • 英文关键词:epidote;;mineral composition;;Duobaoshan;;Tongshan;;porphyry Cu-Mo deposit;;mineralization
  • 中文刊名:SJDZ
  • 英文刊名:Global Geology
  • 机构:吉林大学地球科学学院;核工业二四〇研究所;
  • 出版日期:2019-05-10 20:48
  • 出版单位:世界地质
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金项目(41472051)资助
  • 语种:中文;
  • 页:SJDZ201902005
  • 页数:16
  • CN:02
  • ISSN:22-1111/P
  • 分类号:56-71
摘要
运用电子探针和LA-IPC-MS分析多宝山及铜山岩体中绿帘石的主、微量成分,结果表明多宝山铜(钼)矿床斑岩体的绢英岩化带含矿样品中绿帘石富Al_2O_3、SiO_2,贫Fe O_T,青磐岩化带中绿帘石则富TiO_2;铜山矿床斑岩体的青磐岩化蚀变带中绿帘石富含MnO、Fe O_T,贫Al_2O_3和SiO_2。多宝山斑岩体中蚀变带及铜山地区中的绿帘石均富集LREE和LILE (Th、U、Sr、Sm),亏损HREE和HFSE(Nb、Zr、Hf)。绿帘石Ps值与样品的含矿性呈负相关,即含矿绿帘石的Ps值明显低于无矿绿帘石的Ps值,青磐岩化带中绿帘石的Ps值集中在26~34之间。多宝山含矿样品中绿帘石的Cu含量高于距成矿中心较远的多宝山和铜山的无矿绿帘石Cu含量。笔者认为斑岩铜矿床中蚀变绿帘石的成分特征可以反映矿化热液的特征,具有指示矿化的潜力。
        The main and trace components of epidote in Duobaoshan and Tongshan deposits were analyzed by electron probe and LA-IPC-MS. The results show that the epidote in the phyllic alteration zone ore-bearing samples of porphyry in the Duobaoshan copper deposit are rich in Al_2 O_3 and SiO_2,poor in Fe OT,while the epidote in prophylitic zone is rich in Ti O_2. In the Tongshan deposit,the epidote in the propylitic alteration zone is rich in MnO and FeOT,but the contents of Al_2 O_3 and SiO_2 are low. In terms of trace elements,both Duobaoshan and Tongshan porphyry deposits are rich in LREE and LILE( Th,U,Sr,S),poor in HREE and HFSE( Nb,Zr,Hf). Negative correlation is observed between Ps value of epidote and mineralization. That is,the Ps values of epidote in the ore-bearing samples are lower than the Ps of epidote in the ore-free samples,and the Ps value of the epidote in the propylitic alteration zone is between 26 and 34. Cu content in ore-bearing epidote is also significantly higher than that of the Cu-free epidote which is far away from the metallogenic center of Duobaoshan and Tongshan.It is suggested that the composition of the altered epidote in the porphyry copper deposit can reflect the characteristics of mineralized hydrothermal fluids and can be a potential indicator of mineralization.
引文
[1]Armbruster T,Bonazzi P,Akasaka M,et al.Recommended nomenclature of epidote-group minerals[J].European Journal of Mineralogy,2006,18(5):551-567.
    [2]Bird D K.Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems[J].American Journal of Science,1981,280:9(5):576-614.
    [3]Gustafson L B,Hunt J P.The porphyry copper deposit at El Salvador,Chile[J].Economic Geology,1975,70(5):857-912.
    [4]Einaudi M T,Hedenquist J W,Inan E E.Sulfidation state of fluids in active and extinct hydrothermal systems:transitions from porphyry to epithermal environments[J].Economic Geology,2003(Suppl.10):285-313.
    [5]侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘,2004,11(1):131-144.HOU Zeng-qian.Porphyry Cu-Mo-Au deposits:some new insights and advances[J].Earth Science Frontiers,2004,11(1):131-144.
    [6]Cooke D R,Baker M,Hollings P,et al.New advances in detecting the distal geochemical footprints of porphyry systems-epidote mineral chemistry as a tool for vectoring and fertility assessments[M].Building Exploration Capability for the 21st Century,2014:372-382.
    [7]崔根,王金益,张景仙,等.黑龙江多宝山花岗闪长岩的锆石SHRIMP U-Pb年龄及其地质意义[J].世界地质,2008,27(4):387-394.CUI Gen,WANG Jin-yi,ZHANG Jing-xian,et al.U-Pb SHRIMP dating of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance[J].Global Geology,2008,27(4):387-394.
    [8]杜琦.多宝山斑岩铜矿床蚀变与矿化特征[J].地质学报,1980(4):65-78.DU Qi.Alteration and mineralization characteristics of the Duobaoshan porphyry copper deposit[J].Acta Geologica Sinica,1980(4):65-78.
    [9]杜琦,陈明秀.多宝山斑岩铜矿床成因模式[J].矿床地质,1983,2(2):42-48.DU Qi,CHEN Ming-xiu.The genetic model of the Duobaoshan porphyry copper deposit[J].Mineral Deposits,1983,2(2):42-48.
    [10]赵元艺,马志红,仲崇学.多宝山铜矿床成矿作用地球化学研究[J].地球科学与环境学报,1997,19(1):28-35.ZHAO Yuan-yi,MA Zhi-hong,ZHONG Chong-xue.Astudy on ore-forming geochemistry of Duobaoshan copper deposit,Heilongjiang province[J].Journal of Earth Sciences and Enivronment,1997,19(1):28-35.
    [11]赵元艺,马志红,冯本智.黑龙江多宝山铜矿床地球化学找矿模型[J].桂林工学院学报,1997(1):49-55.ZHAO Yuan-yi,MA Zhi-hong,FENG Ben-zhi.Geochemcal exploration model of Duobaoshan copper deposit,Heilongjiang[J].Journal of Gui Lin Institute of Technology,1997(1):49-55.
    [12]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的矿床成矿系列及其演化[M].哈尔滨:黑龙江人民出版社,2004:1-241.HAN Zhen-xin,XU Yan-qiang,ZHENG Qing-dao.Metallogenetic series and evolution of significant metal and nonmetal mineral resources in Heilongjiang province[M].Harbin:Heilongjiang People's Publishing House,2004:1-241.
    [13]葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,52(20):2407-2417.GE Wen-chun,WU Fu-yuan,ZHOU Chang-yong,et al.Porphyry Cu-Mo deposits in the eastern Xing'anMongolian Orogenic Belt:mineralization ages and their geodynamic implications[J].Chinese Science Bulletin,2007,52(20):2407-2417.
    [14]向安平,杨郧城,李贵涛,等.黑龙江多宝山斑岩Cu-Mo矿床成岩成矿时代研究[J].矿床地质,2012,31(6):1237-1248.XIANG An-ping,YANG Yun-cheng,LI Gui-tao,et al.Diagenetic and metallogenic ages of Duobaoshan porphyry Cu-Mo deposit in Heilongjiang province[J].Miner Deposits,2012,31(6):1237-1248.
    [15]Zeng Q D,Liu J M,Chu,et al.Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au)deposit,northeast china,and its geological significance[J].Journal of Asian Earth Sciences,2014,79(2),895-909.
    [16]Hao Y J,Ren Y S,Duan M X,et al.Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang province,NE China[J].Journal of Asian Earth Sciences,2015,97:442-458.
    [17]庞绪勇,秦克章,王乐,等.黑龙江铜山断裂的变形特征及铜山铜矿床蚀变带-矿体重建[J].岩石学报,2017,33(2):398-414.PANG Xu-yong,QIN Ke-zhang,WANG Le,et al.Deformation characteristics of the Tongshan fault within Tongshan porphyry copper deposit,Heilongjiang province,and restoration of alteration zones and orebodies[J].Acta Petrologica Sinica,2017,33(2):398-414.
    [18]谭成印,王根厚,李永胜.黑龙江多宝山成矿区找矿新进展及其地质意义[J].地质通报,2010,29(增刊1):436-445.TAN Cheng-yin,WANG Gen-hou,LI yong-sheng.New progress and significance on the mineral exploration in Duobaoshan mineralization area,Heilongjiang,China[J].Geological Bulletin of China,2010,29(Suppl.1):436-445.
    [19]赵忠海,郑卫政,曲晖,等.黑龙江多宝山地区铜金成矿作用及成矿规律[J].矿床地质,2012,31(3):601-614.ZHAO Zhong-hai,ZHENG Wei-zheng,QU Hui,et al.Cu-Au mineralization and metallogenic regularity of Duobaoshan area,Heilongjiang province[J].Mineral Deposits,2012,31(3):601-614.
    [20]Wang X.Metallogeny and reformation of the Duobaoshan superlarge porphyry copper deposit in Heilongjiang[J].Chinese Journal of Geology,2007,42(1):124-133.
    [21]Pearce N J G,Perkins E W T,Westgate J A,et al.Acompilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J].Geostandards Newsletter,1997,24(1):261-274.
    [22]郑巧荣.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报,1983(1):55-62.ZHENG Qiao-rong.Calculation of the Fe3+and Fe2+contents in silicate and Ti-Fe oxide minerals from EMPAdata[J].Acta Mineralogica Sinica,1983(1):55-62.
    [23]Zen E A,Hammarstrom J M.Magmatic epidote and its petrologic significance[J].Geology,1984,12(9):515-518.
    [24]Schmidt M W,Poli S.Magmatic epidote[J].Reviews in Mineralogy&Geochemistry,2004,56(1):399-430.
    [25]Sun S S,Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society(London Special Publications),1989,42(1):313-345.
    [26]Frei D,Liebscher A,Franz G,et al.Trace element geochemistry of epidote minerals[J].Reviews in Mineralogy&Geochemistry,2004,56(1):553-605.
    [27]Tulloch A J.Comments and reply on“Implications of magmatic epidote-bearing plutons on crustal evolution in the accreted terranes of northwestern North America”and“Magmatic epidote and its petrologic significance”[J].Geology,1986,14(2):186.
    [28]Moench R H.Comments and reply on“Implications of magmatic epidote-bearing plutons on crustal evolution in the accreted terranes of northwestern North America”and“Magmatic epidote and its petrologic significance”[J].Geology,1986,14(2):187.
    [29]Cathelineau M,Nieva D A.Chlorite solid solution geothermometer:the Los Azufres(Mexico)geothermal system[J].Contributions to Mineralogy&Petrology,1985,91:235-244.
    [30]Stefano B.Applying X-ray geothermometer diffraction to chlorite[J].Clays and Clay Minerals,1999,47:54-63.
    [31]Rauseli-colom J A,Wiewiora A,Matesanz E.Relationship between composition and d001for chlorite[J].American Mineralogist,1991,76:1373-1379.
    [32]Nieto F.Chemical composition of matapelitic chlorites:X-ray diffraction and optical property approach[J].European Journal of Mineralogy,1997:829-841.
    [33]Battaglia S.Applying X-ray geothermometer diffraction to a chlorite[J].Clays and Clay Minerals,1999,47(1):54-63.
    [34]刘军,武广,钟伟,等.黑龙江省多宝山斑岩型铜(钼)矿床成矿流体特征及演化[J].岩石学报,2010,26(5):1450-1464.LIU Jun,WU Guang,ZHONG Wei,et al.Fluid inclusion study of the Duobaoshan porphyry Cu(Mo)deposit in Heilongjiang Province,China[J].Acta Petrologica Sinica,2010,26(5):1450-1464.
    [35]张华锋,叶青培,翟明国.岩浆绿帘石特征及其地质意义研究进展[J].地球科学进展,2005,20(4):442-448.ZHANG Hua-feng,YE Qing-pei,ZHAI Ming-guo.Summary of characterisitics and significance of the magatic epidote[J].Advances in Earth Science,2005,20(4):442-448.
    [36]Liou J G.Synthesis and stability relations of epidote,Ca2Al2Fe Si3O12(OH)[J].Journal of Petrology,1973,14(3):381-413.
    [37]Tulloch A J.Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite[J].Contributions to Mineralogy&Petrology,1979,69(2):105-117.
    [38]Evans B W,Vance J A.Epidote phenocrysts in dacitic dikes,Boulder County,Colorado[J].Contributions to Mineralogy&Petrology,1987,96(2):178-185.
    [39]Dawes R L,Evans B W.Mineralogy and geothermobarometry of magmatic epidote-bearing dikes,Front Range,Colorado[J].Geological Society of America Bulletin,1991,103(8):1017-1031.
    [40]Vyhnal C R.Hornblende chemistry in southern Appalachian granitoids:implications for aluminum hornblende thermobarometry and magmatic epidote stability[J].American Mineralogist,1991,76:176-188.
    [41]Owen J V.Significance of epidote in orbicular diorite from the Grenville front zone,Eastern Labrador[J].Mineralogical Magazine,1991,55(379):173-181.
    [42]Xiao B,Chen H,Wang Y,et al.Chlorite and epidote chemistry of the Yandong Cu deposit,NW China:metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan[J].Ore Geology Reviews,2018,3(4):168-182.
    [43]傅金宝.斑岩铜矿中黑云母的化学组成特征[J].地质与勘探,1981(9):18-21.FU Jin-bao.Chemical composition of biotite in porphyry copper deposits[J].Geology and Exploration,1981(9):18-21.
    [44]王崴平,唐菊兴,应立娟.西藏甲玛铜多金属矿床角岩中黑云母矿物化学特征及地质意义[J].地球学报,2012,33(4):444-458.WANG Wei-ping,TANG Ju-xing,YING Li-juan.Mineral chemical characteristics of biotites from hornfels in the Jiama(Gyama)polymetallic copper deposit of Tibet and their geological significance[J].Acta Geoscientica Sinica,2012,33(4):444-458.
    [45]杨超,唐菊兴,宋俊龙,等.西藏拿若斑岩型铜(金)矿床绿泥石特征及其地质意义[J].地质学报,2015,89(5):856-872.YANG Chao,TANG Ju-xing,SONG Jun-long,et al.Chlorite characteristic of the Naruo porphyry Cu(Au)deposit in Tibet and its geological significance[J].Acta Geologica Sinica,2015,89(5):856-872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700