用户名: 密码: 验证码:
万寿菊秸秆用于苹果连作土壤生物修复材料的潜力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Potential of marigold straws used for biological disinfestation to continuous cropped apple orchard
  • 作者:王晓芳 ; 赵玉文 ; 王玫 ; 王海燕 ; 盛月凡 ; 尹承苗 ; 陈学森 ; 毛志泉
  • 英文作者:WANG Xiao-fang;ZHAO Yu-wen;WANG Mei;WANG Hai-yan;SHENG Yue-fan;YIN Cheng-miao;CHEN Xue-sen;MAO Zhi-quan;State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University;Shandong Institute of Pomology;
  • 关键词:平邑甜茶 ; 连作障碍 ; 生物消毒 ; 生物量 ; 光合参数 ; 保护性酶活性 ; 尖孢镰孢菌
  • 英文关键词:Malus hupehensis Rehd.;;continous cropping barrier;;biological disinfestation;;biomass;;photosynthetic parameter;;protective enzyme activity;;Fusarium oxysporum
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:作物生物学国家重点实验室/山东农业大学园艺科学与工程学院;山东省果树研究所;
  • 出版日期:2019-06-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.129
  • 基金:国家现代农业产业技术体系建设专项资金项目(CARS-28);; 国家自然科学基金项目(31501720,31672104);; 国家重点研发计划项目(2016YFD0201114);; 山东省自然科学基金项目(ZR2014CL024);; 山东省水果创新团队项目(SDAIT-06-07)
  • 语种:中文;
  • 页:ZWYF201906006
  • 页数:10
  • CN:06
  • ISSN:11-3996/S
  • 分类号:49-58
摘要
【目的】万寿菊秸秆具有抑制有害微生物的作用,而苹果产业的可持续发展受到连作障碍的严重制约。本文研究了利用万寿菊进行连作土壤生物消毒的效果,为万寿菊秸秆的有效利用和苹果连作障碍的生物防控寻找可行的方案。【方法】2017年以平邑甜茶幼苗为试材,以26年苹果树下棕壤为供试土壤进行了盆栽试验。设4个万寿菊秸秆粉加入量0、12、30、60 g/kg,与土壤混合,浇水,幼苗移栽之前用薄膜覆盖15天,揭开晾7天。同时,设置一组不添加万寿菊粉也不用薄膜覆盖的处理作为对照(CK)。在幼苗生长3个月后开始取植株样,每隔一个月取一次,共采集三次,同时采集土壤样品。测定了平邑甜茶幼苗生长指标、光合参数、根系呼吸速率、保护性酶活性及土壤微生物等相关指标。【结果】与不添加万寿菊粉处理(0 g/kg)相比,万寿菊粉不同添加量处理均能显著增加根系呼吸速率,提高根系保护性酶活性;提高了平邑甜茶幼苗叶片的光合参数,促进连作平邑甜茶幼苗生长;优化土壤微生物环境。综合各指标,以30 g/kg处理的效果最好,与不添加万寿菊粉处理相比,平邑甜茶幼苗的根系呼吸速率增加56.6%,根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性分别增加48.7%、113.5%、115.2%。株高、地径、地上部鲜重、叶片叶绿素含量分别增加183.3%、55.5%、221.5%和17.3%。净光合速率(Pn)提高了83.6%,水分利用效率(WUE)提高了57.1%。上述各指标均与0、12、60 g/kg处理差异显著。添加万寿菊秸秆粉处理土壤后,土壤细菌增加,真菌减少,12、30、60 g/kg添加量的土壤细菌/真菌比值分别为99.3、265.7、197.3,分别是不添加处理的1.4倍、3.7倍、2.7倍,处理间差异显著。土壤中的尖孢镰孢菌基因拷贝数均降低,分别比不添加万寿菊粉处理下降18.6%、57.1%、40.4%,处理间差异显著。T-RFLP结果表明,不添加万寿菊粉处理(0 g/kg)与添加12 g/kg处理的真菌群落结构相似,30 g/kg与60 g/kg添加量的真菌群落结构较为相似,均与CK有明显差异。万寿菊添加量60g/kg处理的各指标虽然优于对照,但不如添加量30 g/kg处理的。试验中发现连作土只覆膜处理虽然对各指标的改善有一定的作用,但效果不明显。【结论】在连作土壤上施用适宜量的万寿菊秸秆粉,能降低土壤尖孢镰孢菌的基因拷贝数,明显改变连作土壤的真菌群落结构,提高平邑甜茶幼苗根系的呼吸速率和保护性酶活性,促进幼苗的生长,提高幼苗的光合效率,有效缓解苹果连作障碍。因此,万寿菊秸秆粉是一种有效的连作土壤修复材料,其在生产实践中的适宜添加量需要进一步研究。
        【Objectives】 Marigold straws have been proved possessing inhibition effect on some harmful microorganisms. At the same time, apple industry is suffering from seriously continuous cropping obstacle restricts. The effect of biological disinfestations of marigold straws was studied, to study the recycle of organic wastes and the reform of aged apple orchards.【Methods】A pot experiment was carried out in 2017, the seedlings of Malus hupehensis Rehd. were used as test materials and a continuous cropped soil(26 years' apple orchard) as tested soil. Marigold(Tagetes erecta) straw powder of 0, 12, 30 and 60 g/kg were mixed with soil,watered and mulched with plastic film for 15 days before planting the seedlings. After three months' growth, the seedling samples were collected, and total of three samplings were made every one month interval. Soil samples were collected at the same time. The growth indices, photosynthetic parameters, root respiration rate and protective enzyme activity of Malus hupehensis Rehd. seedlings, and soil microorganisms were measured.【Results】Compared with 0 g/kg treatment, the biological disinfestation to soil mixed with marigold powder could significantly increase root respiration rate significantly, raise protective enzyme activity; and then improve the leaf photosynthetic parameters, promote the seedling growth indices; optimize the soil microbial environment.Comprehensively evaluated, the 30 g/kg treatment was the best. Compared with 0 g/kg treatment, the root respiration rate was increased by 56.6%, the activities of SOD, POD and CAT were increased by 48.7%, 113.5%and 115.2% respectively and the plant heights, ground trunk diameters, the fresh weights of plant above ground and leaf chlorophyll contents were increased by 183.3%, 55.5%, 221.5% and 17.3%, respectively. The net photosynthesis rate(Pn) and the water use efficiency(WUE) of leaves increased by 83.6% and 57.1%,respectively. And all the above indices were significantly different from those of 0 g/kg, 12 g/kg and 60 g/kg treatments. The soil bacteria population was increased and the fungi population was decreased after biological disinfestation. The ratio of bacteria to fungi in soil treated with 12, 30 and 60 g/kg were 99.3, 265.7 and 197.3,respectively, which were 1.4, 3.7 and 2.7 times of the 0 g/kg treatment, with significant differences among the treatments. The number of gene copies of Fusarium oxysporum in soil decreased by 18.6%, 57.1% and 40.4%compared with the 0 g/kg treatment, respectively, which were significant differences among treatments. terminal restrietion fragment length polymorphism(T-RFLP) results showed that the soil fungal community structure of 0 g/kg was similar with that of 12 g/kg, and the fungal community structure of 30 g/kg was relatively similar with that of 60 g/kg, both of them were completely separated from that of CK. The powder dosage was not the more the better, 60 g/kg treatment was better than 0 g/kg, but not as good as the 30 g/kg treatment. The merely film mulching treatment(0 g/kg) improved various indices a little bit, but the effect was not significant.【Conclusions】Biological disinfestation to soil with marigold powder in a proper rate could reduce the number of gene copies of Fusarium oxysporum in soil, change the fungal community structure within continous cropped soils significantly; enhance root respiration rate and protective enzyme activity of apple seedlings; significantly promote the growth of Malus hupehensis Rehd. seedlings, improve the photosynthetic parameters, and effectively alleviate apple continous cropping barrier. Therefore, marigold straw powder is an effective soil remediation material for continuous cropping, and its suitable addition amount in production needs further study.
引文
[1]王艳芳,潘凤兵,付风云,等.甲壳素对连作平邑甜茶生长、光合及抗氧化酶的影响[J].园艺学报,2015,42(1):10-18.Wang Y F,Pan F B,Fu F Y,et al.Effects of chitin on growth,photosynthesis and antioxidative system of Malus hupehensis seedlings under replant condition[J].Acta Horticulturae Sinica,2015,42(1):10-18.
    [2]Van Schoor L,Denman S,Cook N C.Characterisation of apple replant disease under South African conditions and biological management strategies[J].Scientia Horticulturae,2009,19(2):153-162.
    [3]Tewoldemedhin Y T,Mazzola M,Botha W J,et al.Characterization of fungi(Fusarium and Rhizoctonia)and oomycetes(Phytophthora and Pythium)associated with apple orchards in South Africa[J].European Journal of Plant Pathology,2011,130(2):215-229.
    [4]Wang P,Duan W,Takabayashi A,et al.Chloroplastic NAD(P)Hdehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress[J].Plant Physiology,2006,141(2):465-474.
    [5]尹承苗,张先富,胡艳丽,等.不同浓度有机物料发酵流体对连作苹果幼树叶片光合荧光参数和根系抗氧化酶活性的影响[J].中国农业科学,2014,47(9):1847-1857.Yin C M,Zhang X F,Hu Y L,et al.Effect of different concentrations of organic matter fermentation fluid on the young apple tree leaf photosynthesis fluorescent parameters and root antioxidant activity under replant conditions[J].Scientia Agricultura Sinica,2014,47(9):1847-1857.
    [6]蔡祖聪,黄新琦.土壤学不应忽视对作物土传病原微生物的研究[J].土壤学报,2016,53(2):305-310.Cai Z C,Huang X Q.Soil-borne pathogens should not be ignored by soil science[J].Acta Pedologica Sinica,2016,53(2):305-310.
    [7]Momma N.Biological soil disinfestation of soilborne pathogens and its possible mechanisms[J].Japan Agricultural Research Quarterly,2008,42:7-12.
    [8]Mowlick S,Yasukawa H,Inoue T,et al.Suppression of spinach wilt disease by biological soil disinlestation incorporated with Brassica juucea plants in association with changes in soil hacaerial communities[J].Crop Protection,2013,54:185-193.
    [9]Mazzola M,Zhao X W.Brassica juncea seed meal particle size influences chemistry but not soil biology-based suppression of individual agents inciting apple replant disease[J].Plant and soil,2010,337(1-2):313-324.
    [10]Arnault I,Fleurance C,Vey F,et al.Use of Alliaceae residues to control soil-borne pathogens[J].Industrial Crops and Products,2013,49:265-272.
    [11]Yim B,Hanschen F S,Wrede A,et al.Effects of using Brassica juncea and Raphanus sativus in comparison to disinfection using Basamid on apple plant growth and soil microbial communities at three field sites with replant disease[J].Plant and Soil,2016,406(1/2):389-408.
    [12]张华丽,丛日晨,王茂良,等.基于万寿菊转录组测序的SSR标记开发[J].园艺学报,2018,45(1):159-167.Zhang H L,Cong R C,Wang M L,et al.Development of SSRmolecular markers based on transcriptome sequencing of Tagetes erecta[J].Acta Horticulturae Sinica,2018,45(1):159-167.
    [13]秦冲.万寿菊秸秆制备活性炭及其应用的初步研究[D].北京:北京林业大学硕士学位论文,2015.Qin C.Preparation and applied research of activated carbon from marigold straw[D].Beijing:Master Dissertation Beijing Forestry University,2015.
    [14]范志宏,郭春绒,王金胜.万寿菊根提取物对西瓜枯萎病菌的抑菌活性成分及作用机理研究[J].植物病理学报,2010,40(2):195-201.Fan Z H,Guo C R,Wang J S.Active antifungal component of extracts from Tagetes patula root against Fusarium oxysporum f.sp.niveum and its mechanism[J].Acta Phytopathologica Sinica,2010,40(2):195-201.
    [15]毛志泉,王丽琴,沈向,等.有机物料对平邑甜茶实生苗根系呼吸强度的影响[J].植物营养与肥料学报,2004,10(2):171-175.Mao Z Q,Wang L Q,Shen X,et al.Effect of organic materials on respiration intensity of annual Malus hupehensis Rehd.root system[J].Journal of Plant Nutrition and Fertilizer,2004,10(2):171-175.
    [16]谭伟,梁婷,翟衡.乙草胺对葡萄叶片光合和叶绿素荧光特性及叶绿体结构的影响[J].应用生态学报,2012,23(8):2185-2190.Tan W,Liang T,Zhai H.Effects of acetochlor on the photosynthetic and fluorescence characteristics and chloroplast structure of grape leaves[J].Chinese Journal of Applied Ecology,2012,23(8):2185-2190.
    [17]Wang Y F,PAN F B,Wang G S,et al.Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd.seedlings under replant conditions[J].Scientia Horticulturae,2014,175:9-15.
    [18]Omran R G.Peroxide levels and the activities of catalase,peroxidase,and indoleacetic acid oxidase during and after chilling cucumber seedlings[J].Plant Physiology,1980,65(2):407-408.
    [19]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科技出版社,2002.Zhao S J,Shi G A,Dong X C.Experimental guide for plant physiology[M].Beijing:China Agricultural Science and Technology Press,2002.
    [20]程丽娟,薛泉宏.微生物学实验技术[M].西安:世界图书出版公司,2000.Cheng L J,Xue Q H.Microbiology laboratory technology[M].Xi'an:World Book Publishing Company,2000.
    [21]李家家,相立,潘凤兵,等.平邑甜茶幼苗与葱混作对苹果连作土壤环境的影响[J].园艺学报,2016,43(10):1853-1862.Li J J,Xiang L,Pan F B,et al.Effects of Malus hupehensis seedlings and Allium fistulosum mixed cropping on replanted soil environment[J].Acta Horticulturae Sinica,2016,43(10):1853-1862.
    [22]尹承苗,王功帅,李园园,等.连作苹果园土壤真菌的T-RFLP分析[J].生态学报,2014,34(4):837-846.Yin C M,Wang G S,Li Y Y,et al.Assessment of fungal diversity in apple replanted orchard soils by T-RFLP analysis[J].Acta Ecologica Sinica,2014,34(4):837-846.
    [23]王玫,徐少卓,刘宇松,等.生物炭配施有机肥可改善土壤环境并减轻苹果连作障碍[J].植物营养与肥料学报,2018,24(1):220-227.Wang M,Xu S Z,Liu Y S,et al.Improvement of soil properties and control of apple replanting disease by combined application of biochar and organic fertilizer[J].Journal of Plant Nutrition and Fertilizer,2018,24(1):220-227.
    [24]Guo H,Mao Z,Jiang H,et al.Community analysis of plant growth promoting rhizobacteria for apple trees[J].Crop Protection,2014,62:1-9.
    [25]侯慧,董坤,杨智仙,等.连作障碍发生机理研究进展[J].土壤,2016,48(6):1068-1076.Hou H,Dong K,Yang Z X,et al.Advance in mechanism of continuous cropping obstacle[J].Soils,2016,48(6):1068-1076.
    [26]伍朝荣,黄飞,高阳,等.土壤生物消毒对土壤改良、青枯菌抑菌及番茄生长的影响[J].中国生态农业学报,2017,25(8):1173-1180.Wu C R,Huang F,Gao Y,et al.Effect of biological disinfestation on soil improvement,Ralstonia solanacearum suppression and tomato growth[J].Chinese Journal of Eco-Agriculture,2017,25(8):1173-1180.
    [27]Shrestha U,AugéR M,Butler D M.A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops[J].Frontiers in Plant Science,2016,7(213):1254.
    [28]Butler D M,Kokalis-Burelle N,Albano J P,et al.Anaerobic soil disinfestation(ASD)combined with soil solarization as a methyl bromide alternative:vegetable crop performance and soil nutrient dynamics[J].Plant and Soil,2014,378(1/2):365-381.
    [29]张重义,尹文佳,李娟,等.地黄连作的生理生态特性[J].植物生态学报,2010,34(5):547-554.Zhang Z Y,Yin W J,Li J,et al.Physio-ecological properties of continuous cropping Rehmannia glutinosa[J].Chinese Journal of Plant Ecology,2010,34(5):547-554.
    [30]王志强,牛良,鲁振华,等.抗重茬桃砧木新品种‘中桃砧1号’的选育[J].果树学报,2016,33(4):504-508.Wang Z Q,Niu L,Lu Z H,et al.Breeding reporton‘CPR1’,a replanting-tolerant rootstock for peach[J].Journal of Fruit Science,2016,33(4):504-508.
    [31]李志霞,秦嗣军,吕德国,等.植物根系呼吸代谢及影响根系呼吸的环境因子研究进展[J].植物生理学报,2011,47(10):957-966.Li Z X,Qin S J,LüD G,et al.Research progress in root respiratory metabolism of plant and the environmental influencing factors[J].Plant Physiology Journal,2011,47(10):957-966.
    [32]梁永富,王康才,薛启,等.生长调节剂对低温胁迫下酸橙幼苗抗逆生理指标的影响[J].林业科学,2017,53(3):68-75.Liang Y F,Wang K C,Xue Q,et al.Effects of exogenous growth substances on physiological traits of cold tolerance in Citrus aurantium seedlings[J].Scientia Silvae Sinicae,2017,53(3):68-75.
    [33]杨瑞平.西瓜连作障碍缓解技术及其机理研究[D].陕西杨凌:西北农林科技大学博士学位论文,2016.Yang R P.Research on the mitigation technology of watermelon continuous cropping obstacles and its mechanism[D].Yangling Shaanxi:PhD Dissertation,Northwest A&F University,2016.
    [34]吴瑕,吴凤芝,周新刚.分蘖洋葱伴生对番茄矿质养分吸收及灰霉病发生的影响[J].植物营养与肥料学报,2015,21(3):734-742.Wu X,Wu F Z,Zhou X G.Effect of intercropping with tillered onion on mineral nutrient uptake and gray mold disease occurrence of tomato[J].Journal of Plant Nutrition and Fertilizer,2015,21(3):734-742.
    [35]Wu X,Zhao Q Y,Zhao J,et al.Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing[J].Microbial Ecology,2014,70(1):209-218.
    [36]杨永,张学军,李寐华,等.微生物肥料对设施长期连作哈密瓜根际土壤真菌群落结构的影响[J].应用与环境生物学报,2018,24(1):68-74.Yang Y,Zhang X J,Li M H,et al.Effects of microbiologicalfertilizer on rhizosphere soil fungus communities under long-term continuous cropping of protected Hami melon[J].Chinese Journal of Applied and Environmental Biology,2018,24(1):68-74.
    [37]Manici L M,Kelderer M,Caputo F,et al.Impact of cover crop in pre-plant of apple orchards:relationship between crop health,root inhabiting fungi and rhizospheric bacteria[J].Canadian Journal of Plant Science,2015,95:947-958.
    [38]刘星,张书乐,刘国锋,等.土壤生物消毒对甘肃省中部沿黄灌区马铃薯连作障碍的防控效果[J].应用生态学报,2015,26(4):1205-1214.Liu X,Zhang S L,Liu G F,et al.Control of continuous potato monoculture barrier via biological soil disinfestation method in Yellow River irrigation areas of central Gansu Province,Northwest China[J].Chinese Journal of Applied Ecology,2015,26(4):1205-1214.
    [39]高青海,贾双双,郭远远.秸秆集中深还田对设施连作土壤微生物区系和甜瓜根系生长的影响[J].生态学杂志,2016,35(6):1447-1452.Gao Q H,Jia S S,Guo Y Y.Effect of deeply and concentrated straw returning on soil microbial community and melon root growth in continuously cropped greenhouse soil[J].Chinese Journal of Ecology,2016,35(6):1447-1452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700