用户名: 密码: 验证码:
生物炭固定黄假单胞菌剂SBR降解污染物动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics of Immobilized Pseudomonas flava WD-3 by Biochar in SBR for Pollutants Degradation
  • 作者:袁敏 ; 唐美珍 ; 汪文飞 ; 杨月伟
  • 英文作者:YUAN Min;TANG Meizhen;WANG Wenfei;YANG Yuewei;Tianjin Academy of Environmental Science;Key Laboratory of NaSiHu Lake Wetland Ecosystem & Environment Protection, Qufu Normal University;School of Environmental And Municipal Engineering, Lanzhou Jiaotong University;
  • 关键词:生物炭 ; 固定化 ; 黄假单胞菌 ; SBR ; 动力学模型
  • 英文关键词:biochar;;immobilized;;Pseudomonas flava WD-3;;SBR;;dynamic model
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:天津市环境保护科学研究院;曲阜师范大学南四湖湿地生态与环境保护重点实验室;兰州交通大学环境与市政工程学院;
  • 出版日期:2019-04-22 10:00
  • 出版单位:水处理技术
  • 年:2019
  • 期:v.45;No.327
  • 基金:国家自然科学基金(31700433,31672314)
  • 语种:中文;
  • 页:SCLJ201904018
  • 页数:5
  • CN:04
  • ISSN:33-1127/P
  • 分类号:83-87
摘要
利用水稻秸秆生物炭为载体,将黄假单胞菌(Pseudomonas flava WD-3)剂进行固定化,并应用到序批式活性污泥法(SBR)系统,研究系统其优化运行参数、去除效率和降解污染物动力学。结果表明,优化的生物炭固定化黄假单胞菌剂投加量和HRT分别为42 mg/L和3 d,在此条件下,生物炭固定化黄假单胞菌剂对SBR系统废水中TN、NH_4~+-N、TP和COD的去除率较游离菌时有显著的提高,分别为游离菌的1.39、1.51、1.47、1.28倍,且净化效果稳定。SBR系统中生物降解过程符合1级反应动力学模型,生物炭固定化黄假单胞菌剂的投加量、HRT与污染物的去除率呈正相关的1级反应关系。
        Rice straw biochar was used as the carrier to immobilize the Pseudomonas flava WD-3 agent, and applied to the SBR system, the system optimal operation parameters, removal efficiency and the pollutants degradation dynamics were researched. The results showed that the optimal dosage of biochar immobilized Pseudomonas flava WD-3 agent was 42 mg/L and HRT was 3 d. Under this conditions, the removal rates of TN, NH_4~+-N, TP and COD in SBR system wastewater by Pseudomonas flava WD-3 was significantly higher than that of free bacteria, and the removal rates increased by 1.39, 1.51,1.47, 1.28 times, and had stable removal performance. The biodegradation process was fitted with the first order reaction dynamics model in SBR system,the dosage of biochar immobilized Pseudomonas flava WD-3 agent and HRT were positively correlated with the pollutants removal rate.
引文
[1]张抒杨,胡征,陶冶,等.耐冷细菌适应低温机制研究进展及应用[J].山东化工,2017,46(17):63-65.
    [2]唐双,王小雨.低温微生物及其在污水处理中的应用研究进展[J].科技通报,2015,36(7):229-234.
    [3]VACKOV魣L,SRB M,STLOUKAL R,et al.Comparison of denitrification at low temperature using encapsulated Paracoccus denitrificans,Pseudomonas fluorescens and mixed culture[J].Bioresource Technology,2011,102:4661-4666.
    [4]SHUO Y,JINREN N,QIAN C,et al.Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature[J].Bioresource Technology,2013.127:151-157.
    [5]陈红艳,王继华,赵霞,等.低温微生物的研究进展概述[J].哈尔滨师范大学自然科学学报,2008,24(5):79-82.
    [6]李兵,张庆芳,窦少华,等.低温石油降解菌LHB16的筛选及降解特性研究[J].生物技术,2010,20(5):83-85.
    [7]王世杰,王翔,卢桂兰,等.低温微生物修复石油烃类污染土壤研究进展[J].应用生态报,2011,22(4):1082-108.
    [8]梁学优.微生物交联法和包埋法固定化技术应用于氨氮废水处理的研究[D].济南:山东大学,2017.
    [9]尹莉,贾琰,乔丽丽,等.固定化微生物技术处理费托合成废水研究[J].工业用水与废水,2016,47(5):13-16.
    [10]赵欣欣,孙玲,董玉玮,等.固定化微生物技术及其在污水处理中的应用[J].水处理技术,2015,41(7):17-19.
    [11]王里奥,崔志强,钱宗琴,等.微生物固定化的发展及在废水处理中的应用[J].重庆大学学报(自然科学版),2004,27(3):125-129.
    [12]杜勇.生物炭固定化微生物去除水中苯酚的研究[D].重庆:重庆大学,2012.
    [13]LEHMANN J,RILLIG M C,THIES J,et al.Biochar effects on soil biota-a review[J].soil Biology and Biochemistry,2011,43(9):1812-1836.
    [14]邢英,李心清,周志红,等.生物炭对水体中铵氮的吸附特征及其动力学研究[J].地球与环境,2011,39(4):511-516.
    [15]WANG X,WANG X,LIU M,et al.Adsorption-synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials[J].Marine Pollution Bulletin,2015,92(1/2):195-200.
    [16]MA X,LI N,JIANG J,et al.Adsorption-synergic biodegradation of high-concentrated phenolic water by Pseudomonas putida immobilized on activated carbon fiber[J].Journal of Environmental Chemical Engineering,2013,1(3):466-472.
    [17]将群,杨帆,朱墨染,等.玉米秸秆生物炭固定化Acinetobacter lwoffii DNS32性能研究[J].农业环境科学学报,2017,36(2):382-386.
    [18]赵旭,王文丽,李娟,等.低温秸秆降解微生物菌剂的研究进展[J].生物技术通报,2014(11):55-60.
    [19]武丽君,王朝旭,张峰,等.玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能[J].中国环境科学,2016,36(1):74-81.
    [20]唐美珍,李婷婷,王艳娜,等.人工湿地中一株高效低温菌的分离鉴定与去除特性研究[J].环境科学学报,2013,33(3):708-714.
    [21]唐美珍,汪文飞,李如如,等.生物炭对Pseudomonas flava WD-3的固定化及其强化人工湿地污水处理研究[J].环境科学学报,2017,37(9):3442-3448.
    [22]AHMAD M,LEE S S,OH S E,et al.Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes[J].Environmental Science and Pollution Research,2013,20(12):8364-8373.
    [23]YAO Y,GAO B,ZHANG M,et al.Effect of biochar amendment on sorption and leaching of nitrate,ammonium,and phosphate in asandy soil[J].Chemosphere,2012,89(11):1467-1471.
    [24]张继义,李金涛,鲁华涛,等.小麦秸秆生物碳质吸附剂从水中吸附硝基苯的机理[J].环境科学研究,2012,25(3):333-339.
    [25]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [26]唐美珍,丁鹏飞,夏欣,等.Pseudomonas flava WD-3在人工湿地污水净化的应用研究[J].环境科学学报,2014,34(8):1995-2000.
    [27]KADLEC R H.The inadequacy of first-order treatment wetland models[J].Ecol Eng,2000,15:105-119.
    [28]王小晓,鲍建国,龚路军,等.潜流人工湿地处理农村生活污水动力学研究[J].环境科学与技术,2013,36(3):111-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700