用户名: 密码: 验证码:
玉米自交系响应花粒期高温胁迫差异表达基因的分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Differential Expression of High Temperature Stress in Anthesis Stage Related Genes of Maize Inbred Lines
  • 作者:李川 ; 乔江方 ; 朱卫红 ; 代书桃 ; 黄璐 ; 张美微 ; 刘京宝
  • 英文作者:LI Chuan;QIAO Jiangfang;ZHU Weihong;DAI Shutao;HUANG Lu;ZHANG Meiwei;LIU Jingbao;Cereal Crops Institute,Henan Academy of Agricultural Sciences;
  • 关键词:玉米自交系 ; 花粒期 ; 高温胁迫 ; 转录组测序 ; 差异表达基因
  • 英文关键词:Maize inbred lines;;Anthesis stage;;High temperature stress;;Illumina RNA-sequencing;;Differentially expressed genes(DEGs)
  • 中文刊名:HBNB
  • 英文刊名:Acta Agriculturae Boreali-Sinica
  • 机构:河南省农业科学院粮食作物研究所;
  • 出版日期:2019-02-28
  • 出版单位:华北农学报
  • 年:2019
  • 期:v.34
  • 基金:十三五”重点研究计划课题(2017YFD0300400;2017YFD0301102;2016YFD0100103-10-3);; 国家自然基金项目(31701368);; 河南省科技厅基础前沿类项目(162300410259)
  • 语种:中文;
  • 页:HBNB201901002
  • 页数:11
  • CN:01
  • ISSN:13-1101/S
  • 分类号:5-15
摘要
为了探明玉米重要自交系花粒期高温胁迫下转录组基因的表达差异,发掘玉米响应高温胁迫的关键基因和蛋白质,明确高温胁迫引起玉米减产的机理,从而利用分子生物学技术手段提高玉米耐高温胁迫性。首先,利用Ampha~(TM)Z30花粉活性分析仪检测高温胁迫和正常生长条件下玉米自交系昌7-2、郑58的花粉活性。然后收集花粉提取总RNA,利用Illumina Hiseq2000~(TM)高通量测序技术分别对昌7-2、郑58花粒期高温胁迫材料和正常生长条件下的对照材料进行全转录组测序,序列结果分析后获得差异显著表达基因。通过差异基因维恩图(VENN图)重叠区域分析、GO功能分类和富集统计、KEGG pathway通路分类和富集分析以及转录因子分析,获得玉米花粒期高温胁迫相关的重要差异表达基因和蛋白质。花粉活性检测结果显示,高温胁迫后和正常生长条件下,昌7-2花粉活性分别为24. 37%,42. 89%,郑58花粉活性分别为35. 57%,64. 83%。高温胁迫后在昌7-2花粉转录组中共检测到4 176个显著差异表达基因,郑58花粉转录组中共检测到5 487个显著差异表达基因。KEGG pathway通路分类和富集分析结果显示,高温胁迫后郑58的花粉转录组中有2 062个差异表达基因富集到399个相关通路上,昌7-2的花粉转录组中有1 943个差异表达基因富集到352个相关通路上。转录因子分析结果表明,共获得55个转录因子家族,其中,有45个转录因子包含10个以上差异表达基因。研究表明,通过对玉米自交系花粒期高温胁迫后花粉转录组测序获得了大量的差异显著表达基因信息,昌7-2、郑58对高温胁迫响应机制存在明显差异,热激蛋白(Hsps)、热激转录因子(Hsfs)、生长素(IAA)基因和磷脂酰基醇-4,5-二磷酸基因家族(PIP2)在响应玉米花粒期高温胁迫过程中起着重要作用。
        The objective of this study was to investigate the transcriptome differences after and before high temperature stress during maize anthesis stage,and to explore the key genes and proteins which are contributed to the high temperature resistant. The pollen activities of maize inbred lines Chang 7-2 and Zheng 58 were detected by Ampha~(TM)Z30 pollen activity analyzer( Amphays,Switzerland),firstly. RNA-sequencing,construction library and quality assessment were carried out for two periods before and after high temperature treatment using the Illumina Hiseq2000 ~(TM)sequencing platform,then the sequencing results were analyzed by bioinformatics. The differential expression genes( DEGs) were analyzed using edegR software. Key different expression genes and proteins with high temperature resistance were analyzed by VENN mapping,GO functional enrichment,KEGG pathway method and transcription factors analysis. The pollen activity of Chang 7-2 grown in normal condition was 42. 89% and the pollen activity which was treated by high temperature during anthesis stage was 24. 37%. The pollen activity of Zheng58 which was grown in normal condition was 64. 83% and the pollen activity treated by high temperature was35. 57%. The results showed that 4 176 significant DEGs were detected in Chang 7-2 inbred under normal growth condition and high temperature treatment. 5 487 significant DEGs were detected in Zheng 58 inbred under normal growth condition and high temperature treatment. KEGG pathway enrichment analysis showed that 2 062 differentially expressed genes in Zheng 58 were enriched in 399 related pathways. KEGG pathway enrichment analysis showed that 1 943 DEGs in Chang 7-2 were enriched in 352 related pathways. A total of 55 transcription factor families were obtained by the transcription factor analysis,of which 45 transcriptional factors contained more than 10 differentially expressed genes. In conclusion,Comparing the RNA-sequencing after and before high temperature treatment of Chang 7-2 and Zheng 58,many DEGs were obtained. The differences of response mechanisms between Chang7-2 and Zheng 58 to anthesis high temperature stress were comparatively analyzed. The three gene families( Hsfs,IAA and PIP2) and the Hsps proteins are playing significant roles in the regulation of high temperature stress in maize.
引文
[1]张倩,赵艳霞,王春乙.我国主要农业气象灾害指标研究进展[J].自然灾害学报,2010,19(6):40-54.doi:10. 13577/j. jnd. 2010. 0606.Zhang Q,Zhao Y X,Wang C Y. Advances in researchon major agro-meteorological disaster index in China[J].Journal of Natural Disasters,2010,19(6):40-54. doi:10. 13577/j. jnd. 2010. 0606.
    [2]尹小刚,王猛,孔箐锌,王占彪,张海林,褚庆全,文新亚,陈阜.东北地区高温对玉米生产的影响及对策[J].应用生态学报,2015,26(1):186-198. doi:10. 13287/j. 1001-9332. 20141021. 008.Yin X G,Wang M,Kong Q X,Wang Z B,Zhang H L,Chu Q Q,Wen X Y,Chen F. Impacts of high tempera-ture on maize production and adaptation measures inNortheast China[J]. Chinese Journal of Applied Ecolo-gy,2015,26(1):186-198. doi:10. 13287/j. 1001-9332. 20141021. 008.
    [3]赵龙飞,李潮海,刘天学,王秀萍,僧珊珊,潘旭.玉米花期高温响应的基因型差异及其生理机制[J].作物学报,2012,38(5):857-864. doi:10. 3724/SP. J.1006. 2012. 00857.Zhao L F,Li C H,Liu T X,Wang X P,Seng S S,PanX. Genotypic responses and physiological mechanisms ofmaize to high temperature stress during flowering[J].Acta Agronomica Sinica,2012,38(5):857-864. doi:10. 3724/SP. J. 1006. 2012. 00857.
    [4]降志兵,陶洪斌,吴拓,王璞,宋庆芳.高温对玉米花粉活力的影响[J].中国农业大学学报,2016,21(3):1007-4333. doi:11841/j. issn. 1007-4333. 2016. 03. 04.Jiang Z B,Tao H B,Wu T,Wang P,Song Q F. Effectsof high temperature on maize pollen viability[J]. Journalof China Agricultural University,2016,21(3):1007-4333. doi:11841/j. issn. 1007-4333. 2016. 03. 04.
    [5]张吉旺,董树亭,王空军,刘鹏,胡昌浩.大田增温对夏玉米光合特性的影响[J].应用生态学报,2008,19(1):81-86. doi:10. 13287/j. 1001-9332. 2008. 0027.Zhang J W,Dong S T,Wang K J,Liu P,Hu C H.Effects of increasing field temperature on photosyntheticcharacteristics of summer maize[J]. Chinese Journal ofApplied Ecology,2008,19(1):81-86. doi:10. 13287/j. 1001-9332. 2008. 0027.
    [6]赵龙飞,李潮海,刘天学,王秀萍,僧珊珊.花期前后高温对不同基因型玉米光合特性及产量和品质的影响[J].中国农业科学,2012,45(23):4947-4958.doi:10. 3864/j. issn. 0578-1752. 2012. 23. 023.Zhao L F,Li C H,Liu T X,Wang X P,Seng S S.Effect of high temperature during flowering on photosyn-thetic characteristics and grain yield and quality of differ-ent genotypes of maize(Zea Mays L.)[J]. Scientia Ag-ricultura Sinica,2012,45(23):4947-4958. doi:10.3864/j. issn. 0578-1752. 2012. 23. 023.
    [7] Wang G P,Tian F X,Zhang M,Wang W. The over ac-cumulation of glycinebetaine alleviated damages to PSⅡof wheat flag leaves under drought and high temperaturestress combination[J]. Acta Physiologiae Plantarum,2014,36(10):2743-2753. doi:10. 1007/s11738-014-1645-2.
    [8] Guo M,Liu J H,Ma X,Luo D X,Gong Z H,Lu M H.The plant heat stress transcription factors(HSFs):struc-ture,regulation,and function in response to abiotic stres-ses[J]. Frontiers in Plant Science,2016,7(273):114.doi:10. 3389/fpls. 2016. 00114.
    [9] Gill S S,Tuteja N. Reactive oxygen species and antioxi-dant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930. doi:10. 1016/j. plaphy. 2010. 08. 016.
    [10]胡秀丽,李艳辉,杨海荣,刘全军,李潮海. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力[J].作物学报,2010,36(4):636-644.doi:10. 3724/SP. J. 1006. 2010. 00636.Hu X L,Li Y H,Yang H R,Liu Q J,Li C H. Heatshock protein 70 may improve the ability of antioxidantdefense induced by the combination of drought and heatin maize leaves[J]. Acta Agronomica Sinica,2010,36(4):636-644. doi:10. 3724/SP. J. 1006. 2010. 00636.
    [11] Xu Z S,Li Z Y,Chen Y,Chen M,Li L C,Ma Y Z.Heat shock protein 90 in plants:molecular mechanismsand roles in stress responses[J]. International Journal ofMolecular Sciences,2012,13(12):15706-15723. doi:10. 3390/ijms131215706.
    [12]赵丽晓,雷鸣,王璞,陶洪斌.花期高温对玉米子粒发育和产量的影响[J].作物杂志,2014(4):6-9.doi:10. 16035/j. issn. 1001-7283. 2014. 04. 003.Zhao L X,Lei M,Wang P,Tao H B. Effects of hightemperature stress during flowering on maize kernel de-velopment and grain yield[J]. Crops,2014(4):6-9.doi:10. 16035/j. issn. 1001-7283. 2014. 04. 003.
    [13]张桂莲,廖斌,武小金,肖应辉,肖浪涛,陈立云.高温对水稻胚乳淀粉合成关键酶活性及内源激素含量的影响[J].植物生理学报,2014,50(12):1840-1844. doi:10. 13592/j. cnki. ppj. 2014. 0344.Zhang G L,Liao B,Wu X J,Xiao Y H,Xiao L T,Chen L Y. Effect of high temperature on activities of en-zymes associated with starch synthesis and hormonescontents in endosperm of rice[J]. Acta Phytophysiologi-ca Sinica,2014,50(12):1840-1844. doi:10. 13592/j. cnki. ppj. 2014. 0344.
    [14]赵丽晓,张萍,王若男,王璞,陶洪斌.花后前期高温对玉米强弱势籽粒生长发育的影响[J].作物学报,2014,40(10):1839-1845. doi:10. 3724/SP. J.1006. 2014. 01839.Zhao L X,Zhang P,Wang R N,Wang P,Tao H B.Effect of high temperature after flowering on growth anddevelopment of superior and inferior maize kernels[J].Acta Agronomica Sinica,2014,40(10):1839-1845.doi:10. 3724/SP. J. 1006. 2014. 01839.
    [15]李德,孙义,孙有丰.淮北平原夏玉米花期高温热害综合气候指标研究[J].中国生态农业学报,2015,23(8):1035-1044. doi:10. 13930/j. cnki. cjea.150061.Li D,Sun Y,Sun Y F. Use of integrated climatic indexto determine high temperature damage to summer maizeat florescence in the Huaibei plain[J]. Chinese Journalof Eco-agriculture,2015,23(8):1035-1044. doi:10.13930/j. cnki. cjea. 150061.
    [16]于康珂,刘源,李亚明,孙宁宁,詹静,尤东玲,牛丽,李潮海,刘天学.玉米花期耐高温品种的筛选与综合评价[J].玉米科学,2016,24(2):62-71.doi:10. 13597/j. cnki. maize. science. 20160213.Yu K K,Liu Y,Li Y M,Sun N N,Zhan J,You D L,Niu L,Li C H,Liu T X. Screening and comprehensiveevaluation of heat-tolerance of maize hybrids in floweringstage[J]. Journal of Maize Science,2016,24(2):62-71. doi:10. 13597/j. cnki. maize. science. 20160213.
    [17]于康珂,孙宁宁,詹静,顾海靖,刘刚,潘利文,刘天学.高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响[J].玉米科学,2017,25(4):84-91.doi:10. 13597/j. cnki. maize. science. 20170413.Yu K K,Sun N N,Zhan J,Gu H J,Liu G,Pan L W,Liu T X. Effect of high temperature stress on physiologi-cal characteristics of tassel and ear in different maize va-rieties[J]. Journal of Maize Science,2017,25(4):84-91. doi:10. 13597/j. cnki. maize. science. 20170413.
    [18] Syed A Z,Amjad H,Muhammad A N,Wei M,Meh-mood A,Muzammil H,Mehboob R. Mechanisms andmolecular approaches for heat tolerance in rice under cli-mate change scenario[J]. Journal of Integrative Agricul-ture,2018,17(4):726-738. doi:10. 1016/S2095-3119(17)61718-0.
    [19] Sato H,Todaka D,Kudo M,Mizoi J,Kidokoro S,Zhao Y,Shinozaki K,Yamaguchi S K. The Arabidopo-sis transcriptional regulator DPB3-1enhances heat stresstolerance without growth retardation in rice[J]. PlantBiotechnology,2016,14(8):1756-1767. doi:10.1111/pbi. 12535.
    [20] Todaka D,Nakashima K,Shinozaki K A. Toward under-standing transcriptional regulatory networks in abioticstress responses and tolerance in rice[J]. Rice,2012,5(1):6. doi:10. 1186/1939-8433-5-6.
    [21] Qu A L,Ding Y F,Jiang Q,Zhu C. Molecular mecha-nisms of the plant heat stress response[J]. Biochemicaland Biophysical Research Communications,2013,432(2):203-207. doi:10. 1016/j. bbrc. 2013. 01. 104.
    [22] Sakata T,Oshino T,Miura S,Tomabechi M,TsunagaY,Higashitani N,Miyazawa Y A,Watanabe M,Hi-gashitani A. Auxins reverse plant male sterility causedby high temperatures[J]. Proceedings of the National A-cademy of Sciences of the United States of America,2010,107(19):8569-8574. doi:10. 1073/pnas.1000869107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700