用户名: 密码: 验证码:
基于柱透镜多旋转测量的计算成像
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Computational imaging based on multi-rotations measurement of cylinder lens
  • 作者:刘正君 ; 耿勇 ; 谭久彬
  • 英文作者:Liu Zhengjun;Geng Yong;Tan Jiubin;School of Instrumentation Science and Engineering,Harbin Institute of Technology;
  • 关键词:相位恢复 ; 柱透镜 ; 衍射 ; 计算成像
  • 英文关键词:phase retrieval;;cylindrical lens;;diffraction;;computational imaging
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:哈尔滨工业大学仪器科学与工程学院;
  • 出版日期:2019-06-25
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.296
  • 基金:国家自然科学基金(61575053)
  • 语种:中文;
  • 页:HWYJ201906017
  • 页数:5
  • CN:06
  • ISSN:12-1261/TN
  • 分类号:258-262
摘要
提出一种基于单柱透镜旋转调制的光学扫描成像系统,样品的完整波前信息可以通过柱透镜旋转调制的多幅强度图样迭代重建。此外,柱透镜的旋转角度作为该系统的一个关键参数,其值通过基于Radon变换的数值计算方法得到,摆脱了对高精度旋转设备的要求。该成像系统的可行性在仿真和实验结果中均得以验证。与轴向多距离扫描成像系统相比,该成像系统中各光学元件在轴向位置保持固定,数据获取速度得以加快且轴向采样率保持固定,不仅简化了光场重构中的算法设计,而且极大地加快了收敛速度。
        In this paper, an optical scanning imaging system based on a single cylindrical lens rotation modulation was proposed. The complete wavefront information of the sample could be iteratively reconstructed by intensity patterns of the rotational modulation of the cylindrical lens. In addition, as a key parameter of the system, rotation angles of cylindrical lens were obtained by numerical calculation method based on the Radon transform, which got rid of the requirements for high-precision rotating equipment. Both the simulation and experimental results have verified the feasibility of the method.Compared with the axial multi-distance scanning imaging system, all optical components in the imaging system remain fixed in the axial position, so the data acquisition speed is accelerated and the axial sampling rate is kept fixed. It not only simplifies the algorithm design in the light field reconstruction,but also greatly speeds up the convergence speed.
引文
[1] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J].Science, 2006, 313:1642-1645.
    [2] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J]. Nature Methods, 2006, 3:793-795.
    [3] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85:4795-4797.
    [4] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics,2013, 7:739-745.
    [5] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4):1336-1350.
    [6] Sun J S, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numericalaperture illuminations[J]. Scientific Reports, 2017, 7:1187.
    [7] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy:A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93:023903.
    [8] Olarte O E, Andilla J, Gualda E J, et al. Light-sheet microscopy:a tutorial[J]. Advances in Optics and Photonics, 2018, 10:111-179.
    [9] Im K B, Han S M, Park H, et al. Simple high-speed confocal line-scanning microscope[J]. Optics Express, 2005,13:5151-5156.
    [10] Liu Z, Guo C, Tan J, et al. Iterative phase-amplitude retrieval with multiple intensity images at output plane of gyrator transforms[J]. Journal of Optics, 2015, 17:025701.
    [11] Geng Y, Tan J, Guo C, et al. Computational coherent imaging by rotating a cylindrical lens[J]. Optics Express,2018, 26(17):22110-22122.
    [12] Radon J. On the determination of functions from their integral values along certain manifolds[J]. IEEE Transactions on Medical Imaging, 1986, 5:170-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700