用户名: 密码: 验证码:
一种高抗湿的二氧化锡室温氢敏陶瓷的制备与研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and characterization of a room-temperature hydrogen sensitive Pt-SnO_2 composite nanoceramics with high humidity tolerance
  • 作者:朱胜 ; 李鹏程 ; 陈万平
  • 英文作者:ZHU Sheng;LI Pengcheng;CHEN Wanping;School of Physics and Technology,Wuhan University;
  • 关键词:二氧化锡 ; 室温 ; 传感器 ; 氢气 ; 团聚体 ; 陶瓷
  • 英文关键词:SnO_2;;room temperature;;sensor;;hydrogen;;agglomerate;;ceramics
  • 中文刊名:DZAL
  • 英文刊名:Electronic Components and Materials
  • 机构:武汉大学物理科学与技术学院;
  • 出版日期:2019-04-19 13:23
  • 出版单位:电子元件与材料
  • 年:2019
  • 期:v.38;No.326
  • 基金:国家自然科学基金(61274073,J1210061);; 国家“863”高技术研究发展计划(2013AA031903)
  • 语种:中文;
  • 页:DZAL201904008
  • 页数:8
  • CN:04
  • ISSN:51-1241/TN
  • 分类号:52-59
摘要
湿度的影响是金属氧化物半导体室温气敏材料应用中面临的主要挑战之一。本文通过传统的陶瓷制备工艺,将二氧化锡纳米粉与铂粉混合制备成块状的纳米复合陶瓷。这种块体陶瓷材料在室温50%相对湿度环境下对于较高浓度的氢气具有显著的响应,其对于体积分数1%的氢气响应很好,灵敏度可以达到150。然而它在50%相对湿度的环境下对低浓度氢气的响应仍然会受到很大的抑制。另外,二氧化锡团聚体颗粒也被作为原料用来制备Pt-SnO_2复合纳米陶瓷。在室温以及50%相对湿度环境下,它对体积分数1%的氢气灵敏度高达850,而当相对湿度上升到70%的时候,灵敏度依然能达到450。对于很低浓度的氢气,它也保留着显著的氢敏性能,在50%和70%的相对湿度下,对体积分数为0.04%的氢气灵敏度分别为5和4.1。显然,这种块体陶瓷材料在具备更强的抗湿性能的同时具有更高的灵敏度。微观结构显示这种块体陶瓷材料存在许多团聚体,这种不均匀的微观结构对于抗湿性能的调控具有非常重要的意义。
        The influence of humidity is one of the major challenges for the application of room-temperature hydrogen materials based on semiconducting metal oxides.Pt-SnO_2nanocomposite ceramics were prepared with SnO_2 nanoparticles and Pt powder using traditional ceramic preparation method.This ceramic materials show a sensitivity up to 150 at 1% H_2 in air under 50% relative humidity(RH) at room temperature.However,its response to low concentration of hydrogen(≤0.1%) at moderate humidity(50% RH) is largely suppressed.SnO_2 agglomerate powder is also used as raw material to prepare Pt-SnO_2 nanocompositeceramics,which surprisingly show much higher sensitivities of 850 and 450 under 50% and 70% RH respectively at 1% H_2 in air.For low hydrogen concentration(≤0.1%),it also maintains remarkable hydrogen sensing capabilities.At 50% and 70% RH,the sensitivity to 0.04% H_2 in air is 5 and 4.1 respectively.Obviously,these materials have high humidity tolerance and improved sensing capabilities.Microstructure analysis show that there are many agglomerates in the ceramics,the non-uniform microstructures play an important role in moisture resistance.
引文
[1]Moy R.Liability and the hydrogen economy[J].Science,2003,301(5629):47.
    [2]Yamazoe N.Toward innovations of gas sensor technology[J].Sensors & Actuators B:Chemical,2005,108(1/2):2-14.
    [3]Gu H,Wang Z,Hu Y.Hydrogen gas sensors based on semiconductor oxide nanostructures[J].Sensors,2012,12(12):5517-5550.
    [4]Stetter J R,Li J.Amperometric gas sensors a review[J].Chemical Reviews,2008,108(2):352-366.
    [5]Zhang J,Liu X,Neri G,et al.Nanostructured materials for room‐temperature gas sensors[J].Advanced Materials,2016,28(5):795-831.
    [6]Chen K,Xie K,Feng X,et al.An excellent room-temperature hydrogen sensor based on titania nanotube-arrays[J].International Journal of Hydrogen Energy,2012,37(18):13602-13609.
    [7]Zhao M,Wong M H,Man H C,et al.Resistive hydrogen sensing response of Pd-decorated ZnO “nanosponge” film[J].Sensors and Actuators B:Chemical,2017,249:624-631.
    [8]Shen Y,Yamazaki T,Liu Z,et al.Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires[J].Sensors and Actuators B:Chemical,2009,135(2):524-529.
    [9]Varghese O K,Gong D,Paulose M,et al.Crystallization and high-temperature structural stability of titanium oxide nanotube arrays[J].Journal of Materials Research,2003,18(1):156-165.
    [10]Liu B,Cai D,Liu Y,et al.Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite[J].Sensors and Actuators B:Chemical,2014,193:28-34.
    [11]Xiong Y,Tang Z,Wang Y,et al.Gas sensing capabilities of TiO2 porous nanoceramics prepared through premature sintering[J].Journal of Advanced Ceramics,2015,4(2):152-157.
    [12]Xiong Y,Chen W,Li Y,et al.Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics[J].Nano Research,2016,9(11):3528-3535.
    [13]Song C,Wu G,Sun B,et al.Pt-WO3 porous composite ceramics outstanding for sensing low concentrations of hydrogen in air at room temperature[J].International Journal of Hydrogen Energy,2017,42(9):6420-6424.
    [14]Li P,Xiong Z,Zhu S,et al.Singular room-temperature hydrogen sensing characteristics with ultrafast recovery of PtNb2O5 porous composite ceramics[J].International Journal of Hydrogen Energy,2017,42(51):30186-30192.
    [15]Hübert T,Boon-Brett L,Palmisano V,et al.Developments in gas sensor technology for hydrogen safety[J].International Journal of Hydrogen Energy,2014,39(35):20474-20483.
    [16]Kwon H,Lee Y,Hwang S,et al.Highly-sensitive H2 sensor operating at room temperature using Pt/TiO2 nanoscale Schottky contacts[J].Sensors and Actuators B:Chemical,2017,241:985-992.
    [17]Jeong S H,Kim S,Cha J,et al.Hydrogen sensing under ambient conditions using SnO2 nanowires:synergetic effect of Pd/Sn codeposition[J].Nano Letters,2013,13(12):5938-5943.
    [18]Li Z,Haidry A A,Wang T,et al.Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure[J].Applied Physics Letters,2017,111(3):032104.
    [19]Lupan O,Ursaki V V,Chai G,et al.Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature[J].Sensors and Actuators B:Chemical,2010,144(1):56-66.
    [20]Kim D W,Kim D S,Kim Y G,et al.Preparation of hard agglomerates free and weakly agglomerated antimony doped tin oxide (ATO) nanoparticles by coprecipitation reaction in methanol reaction medium[J].Materials Chemistry and Physics,2006,97(2/3):452-457.
    [21]Yang S,Wang Z,Hu Y,et al.Defect-original room-temperature hydrogen sensing of MoO3 nanoribbon:experimental and theoretical studies[J].Sensors and Actuators B:Chemical,2018,260:21-32.
    [22]Heiland G.Physical and chemical aspects of oxidic semiconductor gas sensors[J].Chemical Sensor Technology,1988,1:15-38.
    [23]Patil D,Seo Y K,Hwang Y K,et al.Humidity sensing properties of poly (o-anisidine)/WO3 composites[J].Sensors and Actuators B:Chemical,2008,128(2):374-382.
    [24]Yamazoe N,Suematsu K,Shimanoe K.Two types of moisture effects on the receptor function of neat tin oxide gas sensor to oxygen[J].Sensors and Actuators B:Chemical,2013,176:443-452.
    [25]Harbeck S,Szatvanyi A,Barsan N,et al.DRIFT studies of thick film un-doped and Pd-doped SnO2 sensors:temperature changes effect and CO detection mechanism in the presence of water vapour[J].Thin Solid Films,2003,436(1):76-83.
    [26]Pavelko R G,Daly H,Hardacre C,et al.Interaction of water,hydrogen and their mixtures with SnO2 based materials:the role of surface hydroxyl groups in detection mechanisms[J].Physical Chemistry Chemical Physics,2010,12(11):2639-2647.
    [27]Li Y,Luo W,Qin N,et al.Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing[J].Angewandte Chemie International Edition,2014,53(34):9035-9040.
    [28]Oleksenko L P,Maksymovych N P,Sokovykh E V,et al.Study of influence of palladium additives in nanosized tin dioxide on sensitivity of adsorption semiconductor sensors to hydrogen[J].Sensors and Actuators B:Chemical,2014,196:298-305.
    本文系“第十七届全国电介质会议暨第十九届全国电子元件会议及2018国际固态制冷材料和器件研讨会”会议论文。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700