用户名: 密码: 验证码:
膨胀偏流喷管高度补偿机制数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Study on Altitude Compensation Mechanism of Expansion-Deflection Nozzle
  • 作者:张琦 ; 李明肤 ; 王革 ; 李冬冬 ; 张莹 ; 赵明阳
  • 英文作者:ZHANG Qi;LI Ming-fu;WANG Ge;LI Dong-dong;ZHANG Ying;ZHAO Ming-yang;College of Aerospace and Civil Engineering,Harbin Engineering University;
  • 关键词:膨胀偏流喷管 ; 高度补偿 ; 数值模拟 ; 工作模态
  • 英文关键词:Expansion-deflection nozzle;;Altitude compensation;;Numerical simulation;;Working mode
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:哈尔滨工程大学航天与建筑工程学院;
  • 出版日期:2019-01-15
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.259
  • 语种:中文;
  • 页:TJJS201901006
  • 页数:9
  • CN:01
  • ISSN:11-1813/V
  • 分类号:50-58
摘要
为了研究膨胀偏流喷管高度补偿性能,采用CFD方法,对环喉式(ATEDN)和分散式(DTEDN)膨胀偏流喷管在不同高度的工作状态进行了研究,分析了高度变化对膨胀偏流喷管性能的影响和膨胀偏流喷管的高度补偿机制。结果表明:在工作高度0km~15km内,膨胀偏流喷管推力系数优于传统喷管,具有自动补偿能力,其工作模态是从低空"开放"模态转换到高空"闭合"模态。环喉式膨胀偏流喷管性能优于分散式膨胀偏流喷管,其中心体尾锥角、收敛角和初始角存在最优角度,分别为70°,5°和65°,其中收敛角对性能影响较小。对于分散式膨胀偏流喷管,喉孔数目为6喉孔的喷管高度积分总冲比4喉孔的喷管高1.94%;采用带状喉孔的喷管高度积分总冲比圆孔喉口的喷管高3.47%。
        In order to study the altitude compensation effect of the expansion-deflection nozzle,the working condition at different height of annular throat expansion-deflection nozzle(ATEDN)and the discrete throat expansion-deflection nozzle(DTEDN)were calculated by CFD method.The result shows that in the height range of 0 km~15 km,two kinds of expansion-deflection nozzles automaticly have ability of compensation,and better than the traditional nozzle.The operating mode is converted from the low altitude 'open' mode to the 'closed' mode.The performance of ATEDN is better than DTEDN.For the ATEDN,the optimal angel of cone tail angel,convergent angle and initial angle is 70°,5°and 65° respectively,and the convergent angle has no obvious influence on the performance of the nozzle.For the DTEDN,the specific impulse integration of height of the nozzle with 6 throats is 1.94% more than that of nozzle with 4 throats.The specific impulse integration of height of DTEDN which uses zonal holes is 3.47% more than which uses circular holes.
引文
[1]Rao G V R.Approximation of Optimum Thrust Nozzle Contour[J].ARS Journal,1960,30(6).
    [2]Schorr C.Constant Chamber Pressure Throttling of an Expansion-Deflection Nozzle[J].Journal of Spacecraft,1970,7(7):843-847.
    [3]王长辉,刘宇,王一白.塞式喷管在固体火箭发动机上的应用研究[J],固体火箭技术,2005,28(1):36-39.
    [4]Gerald Hagemann,Hans Immich,Thong Van Nguyen.Advanced Rocket Nozzle[J].Journal of Propulsion and Power,1998,14(5):620-622.
    [5]Luke G.Use of Nozzle Trip Rings to Reduce Nozzle Separation Side Force During Staging[C].Nashville:8th Joint Propulsion Conference and Exhibit,1992.
    [6]Taylor N V.Experimental and Computational Analysis of an E-D Nozzle in Open Wake Mode[C].Honolulu:26th AIAA Applied Aerodynamics Conference,2008.
    [7]Schomberg K,Doig G,Olsen J.Geometric Analysis of the Linear Expansion-Deflection Nozzle at Highly Overexpanded Flow Conditions[C].Cleveland:50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2014.
    [8]刘宝芬.固体推进技术的发展动向[J].世界导弹与航天,1988,(4):44-48.
    [9]于胜春,蔡体敏,何洪庆,等.强制偏流喷管的实验研究[J].推进技术,1995,16(2):17-20.(YUSheng-chun,CAI Ti-min,HE Hong-qing,et al.An Experimental Research on Forced Deflection Nozzles[J].Journal of Propulsion Technology,1995,16(2):17-20.)
    [10]于胜春,蔡体敏,何洪庆.强制偏流喷管的数值仿真[J].推进技术,1995,16(4):34-39.(YU Shengchun,CAI Ti-min,HE Hong-qing.Three-Dimensional Numerical Simulation of Forced Deflection Nozzles[J].Journal of Propulsion Technology,1995,16(4):34-39.)
    [11]于胜春,汤龙生.固体火箭发动机喷管及羽流流场的数值分析[J].固体火箭技术,2004,(2):95-97.
    [12]Mockenhaupt J,Felix G.Cold Flow Test of Forced Deflection Nozzles for Integrated Stage Application[R].AIAA 81-1420.
    [13]杨炳尉.标准大气参数的公式表示[J].宇航学报,1983,4(1):86-89.
    [14]虞跨海,莫展,固体火箭发动机特型喷管造型设计与优化[J].导弹与制导学报,2012,3(1):51-54.
    [15]覃粒子,王长辉,刘宇,等.三维喷管设计[J].推进技术,2005,26(6):499-503.(QIN Li-zi,WANGChang-hui,LIU Yu,et al.Three-Dimensional Nozzle Design[J].Journal of Propulsion Technology,2005,26(6):499-503.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700