用户名: 密码: 验证码:
断裂熔融作用中单质铁的形成及其指示的孕震环境
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metallic iron formed by melting and its seismogenic setting indication
  • 作者:张蕾 ; 李海兵 ; 孙知明 ; 曹勇 ; 王焕
  • 英文作者:ZHANG Lei;LI Hai Bing;SUN Zhi Ming;CAO Yong;WANG Huan;MNR Key Laboratory of Deep-Earth Dynamics,Institute of Geology,Chinese Academy of Geological Sciences;Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral,Shandong University of Science and Technology;MNR Key Laboratory of Paleomagnetism and Tectonic Reconstruction,Institute of Geomechanics,Chinese Academy of Geological Sciences;
  • 关键词:假玄武玻璃 ; 高温实验 ; 孕震环境 ; 大地震活动 ; 龙门山断裂带
  • 英文关键词:Pseudotachylyte;;High temperature experiments;;Seismogenic setting;;Large earthquake;;Longmen Shan thrust belt
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质科学院地质研究所自然资源部深地动力学重点实验室;山东科技大学山东省沉积成矿作用与沉积矿产重点实验室;中国地质科学院地质力学研究所自然资源部古地磁与古构造重建重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金项目(41520104006、41830217、41802223、41602226);; 中国博士后基金项目(2018M640163);; 山东省沉积成矿作用与沉积矿产重点实验室开放基金课题(DMSM2019002)联合资助
  • 语种:中文;
  • 页:YSXB201906015
  • 页数:17
  • CN:06
  • ISSN:11-1922/P
  • 分类号:279-295
摘要
目前缺乏来自于地震断裂带的假玄武玻璃的原始特征研究,制约着我们对地震孕震环境和地震发生机制的认识。本文以龙门山断裂带汶川科钻2号钻孔岩心的碎裂岩及花岗闪长岩为研究对象,通过氩气环境下的高温加热实验(最高温度达1750℃)、显微结构观察、地球化学分析和岩石磁学测试,探讨断裂熔融作用中单质铁的形成及其指示意义。花岗闪长岩和碎裂岩在1100℃时发生部分熔融作用,形成了非晶质和微晶;在≥1300℃时形成了大量单质铁组成的微球粒,可能是含铁矿物发生了以碳物质为还原剂的高温还原反应。高温实验后样品的磁化率值高于碎裂岩的磁化率值,新生成的磁铁矿是≤1100℃的样品高磁化率值的主要原因;熔融作用中形成的单质铁和少量的磁铁矿是≥1300℃样品高磁化率值的重要原因。结合前人对于快速摩擦实验熔体、地幔物质及陨石的研究,我们认为粘土矿物、硅酸盐矿物含量较多的断层泥在同震滑移中因热增压机制很难形成单质铁;而花岗岩、安山岩、辉长岩、闪长岩等岩浆岩和糜棱岩在流体作用弱和硫化物含量低的环境中易在大地震中形成单质铁。龙门山断裂带的假玄武玻璃的熔融温度≥1300℃,硫元素含量较低并发现有过剩铁元素。因此,表明龙门山断裂带的假玄武玻璃中可能形成了单质铁,其和磁铁矿是假玄武玻璃高磁化率值异常的重要原因,并指示了深部流体作用弱、硫化物含量低、还原性的孕震环境。
        The natural property of pseudotachylyte from earthquake fault zones remains unknown,which limit our understanding of seismogenic setting and earthquake mechanism. To investigate the formation of metallic iron in pseudotachylyte and its implications,we carried out high temperature heating experiments( up to 1750℃) under an argon environment on cataclasite and granodiorite from the Wenchuan earthquake Fault Scientific Drilling Borehole 2( WFSD-2) cores. Microstructural,geochemical and rock-magnetic analyses were performed. The melting of cataclasite and granodiorite occurred at 1100℃ yielded amorphous components and microlites. Above 1300℃,many circular metallic iron spherulites were formed by the reducing action of Fe-bearing minerals at elevated temperatures.The magnetic susceptibility( MS) values of the samples after the heating experiments are higher than prior to it. The newly-formed magnetite induces the high MS values of the samples below 1100℃. The metallic iron formed in the melting and few magnetite grains explain the high MS values of samples above 1300℃. Combined with previous researches of high-velocity friction experiments,mantle materials and chondrites,metallic iron may not form in the fault gouge having clay or silicate minerals because of the thermal pressurization during large earthquakes,while they can form in the granite,andesite,gabbro,diorite and mylonite with little fluid,few sulfides and amount of reducing materials during large earthquakes. The excess iron,few sulfides and the frictional melting temperature reached 1300℃ during ancient earthquakes in the Longmen Shan thrust belt,indicating that metallic iron might be formed in the pseudotachylyte and might explain the high MS values of pseudotachylyte. The metallic iron formed within the pseudotachylyte in the Longmen Shan thrust belt might indicate a depth reducing seismogenic environment with weak fluid activity,few sulfides and amount of reducing materials.
引文
Acton G,Yin QZ,Verosub KL,Jovane L,Roth A,Jacobsen B and Ebel DS.2007.Micromagnetic coercivity distributions and interactions in chondrules with implications for paleointensities of the early solar system.Journal of Geophysical Research:Solid Earth,112(B3):B03S90
    Andersen TB and Austrheim H.2006.Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica.Earth and Planetary Science Letters,242(1-2):58-72
    Archard JF.1959.The temperature of rubbing surfaces.Wear,2(6):438-455
    Bai WJ,Ren YF,Yang JS,Fang QS,Yan BG and Rong H.2006.The native iron and wustite assemblage:Records of oxygen element from the mantle.Acta Geoscientica Sinica,27(1):43-49(in Chinese with English abstract)
    Bird JM and Weathers MS.1977.Native iron occurrences of Disko Island,Greenland.The Journal of Geology,85(3):359-371
    Brantut N,Schubnel A,Rouzaud JN,Brunet F and Shimamoto T.2008.High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics.Journal of Geophysical Research:Solid Earth,113(B10):B10401
    Cahyono RB,Rozhan AN,Yasuda N,Nomura T,Hosokai S,Kashiwaya Y and Akiyama T.2013.Catalytic coal-tar decomposition to enhance reactivity of low-grade iron ore.Fuel Processing Technology,113:84-89
    Chen M,Sharp TG,El Goresy A,Wopenka B and Xie XD.1996.The majorite-pyrope+magnesiowustite assemblage:Constraints on the history of shock veins in chondrites.Science,271(5255):1570-1573
    Craddock JP,Malone DH,Magloughlin J,Cook AL,Rieser ME and Doyle JR.2009.Dynamics of the emplacement of the Heart Mountain allochthon at White Mountain:Constraints from calcite twinning strains,anisotropy of magnetic susceptibility,and thermodynamic calculations.Geological Society of America Bulletin,121(5-6):919-938
    Deng QH,Gong LX,Zhang LP,Yuan RM,Xue YQ,Geng XK and Hu SX.2017.Simulating dynamic processes and hypermobility mechanisms of the Wenjiagou rock avalanche triggered by the 2008Wenchuan earthquake using discrete element modelling.Bulletin of Engineering Geology and the Environment,76(3):923-936
    Densmore AL,Ellis MA,Li Y,Zhou RJ,Hancock GS and Richardson N.2007.Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau.Tectonics,26(4):TC4005
    Di Toro G and Pennacchioni G.2004.Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites(Italian Southern Alps).Journal of Structural Geology,26(10):1783-1801
    Di Toro G,Hirose T,Nielsen S,Pennacchioni G and Shimamoto T.2006.Natural and experimental evidence of melt lubrication of faults during earthquakes.Science,311(5761):647-649
    Di Toro G,Han R,Hirose T,De Paola N,Nielsen S,Mizoguchi K,Ferri F,Cocco M and Shimamoto T.2011.Fault lubrication during earthquakes.Nature,471(7339):494-498
    Feng YY,Yu CQ,Fan ZG,Song LR,Liang SS,He JJ and Mei ZF.2016.Fine crustal structure of the Lushan area derived from seismic reflection profiling.Chinese Journal of Geophysics,59(9):3248-3259(in Chinese with English abstract)
    FerréEC,Zechmeister MS,Geissman JW,MathanaSekaran N and Kocak K.2005.The origin of high magnetic remanence in fault pseudotachylites:Theoretical considerations and implication for coseismic electrical currents.Tectonophysics,402(1-4):125-139
    FerréEC,Geissman JW and Zechmeister MS.2012.Magnetic properties of fault pseudotachylytes in granites.Journal of Geophysical Research:Solid Earth,117(B1):B01106
    FerréEC,Meado AL,Geissman JW,Di Toro G,Spagnuolo E,Ueda T,Ashwal LD,Deseta N,Andersen TB,Filiberto J and Conder JA.2017.Earthquakes in the mantle?Insights from rock magnetism of pseudotachylytes.Journal of Geophysical Research:Solid Earth,122(11):8769-8785
    Ferri F,Di Toro G,Hirose T and Shimamoto T.2010.Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges.Terra Nova,22(5):347-353
    Fukuchi T,Mizoguchi K and Shimamoto T.2005.Ferrimagnetic resonance signal produced by frictional heating:A new indicator of paleoseismicity.Journal of Geophysical Research:Solid Earth,110:B12404
    Fu BH,Shi PL,Guo HD,Okuyama S,Ninomiya Y and Wright S.2011.Surface deformation related to the 2008 Wenchuan earthquake,and mountain building of the Longmen Shan,eastern Tibetan Plateau.Journal of Asian Earth Sciences,40(4):805-824
    Goldsby DL and Tullis TE.2002.Low frictional strength of quartz rocks at subseismic slip rates.Geophysical Research Letters,29(17):1844
    Han R,Shimamoto T,Hirose T,Ree JH and Ando JI.2007.Ultralow friction of carbonate faults caused by thermal decomposition.Science,316(5826):878-881
    Hirono T,Ikehara M,Otsuki K,Mishima T,Sakaguchi M,Soh W,Omori M,Lin WR,Yeh EC,Tanikawa W and Wang CY.2006a.Evidence of frictional melting from disk-shaped black material,discovered within the Taiwan Chelungpu fault system.Geophysical Research Letters,33(19):L19311
    Hirono T,Lin WR,Yeh EC,Soh W,Hashimoto Y,Sone H,Matsubayashi O,Aoike K,Ito H,Kinoshita M,Murayama M,Song SR,Ma KF,Hung JH,Wang CY and Tsai YB.2006b.High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault:Nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B,TCDP.Geophysical Research Letters,33(15):L15303
    Hirose T and Shimamoto T.2005.Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting.Journal of Geophysical Research:Solid Earth,110(B5):B05202
    Hirose T and Bystricky M.2007.Extreme dynamic weakening of faults during dehydration by coseismic shear heating.Geophysical Research Letters,34(14):L14311
    Humbert F,Robion P,Louis L,Bartier D,Ledésert B and Song SR.2012.Magnetic inference of in situ open microcracks in sandstone samples from the Taiwan Chelungpu Fault Drilling Project(TCDP).Journal of Asian Earth Sciences,45:179-189
    Jana D and Walker D.1997.The influence of sulfur on partitioning of siderophile elements.Geochimica et Cosmochimica Acta,61(24):5255-5277
    Ji XL and Pan YX.2011.A review of meteorites magnetism.Progress in Geophysics,26(6):1983-1992(in Chinese with English abstract)
    Kelley SP,Reddy SM and Maddock R.1994.Laser-probe40Ar/39Ar investigation of a pseudotachylyte and its host rock from the Outer Isles thrust.Scotland.Geology,22(5):443-446
    Kuo LW,Li HB,Smith SAF,Di Toro G,Suppe J,Song SR,Nielsen S,Sheu HS and Si JL.2014.Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake.Geology,42(1):47-50
    Kuo LW,Di Felice F,Spagnuolo E,Di Toro G,Song SR,Aretusini S,Li HB,Suppe J,Si JL and Wen CY.2017.Fault gouge graphitization as evidence of past seismic slip.Geology,45(11):979-982
    Kuo LW,Huang JR,Fang JN,Si JL,Li HB and Song SR.2018a.Carbonaceous materials in the fault zone of the Longmenshan Fault Belt:1.Signatures within the Deep Wenchuan earthquake fault zone and their implications.Minerals,8(9):385
    Kuo LW,Huang JR,Fang JN,Si JL,Song SR,Li HB and Yeh EC.2018b.Carbonaceous materials in the fault zone of the Longmenshan Fault Belt:2.Characterization of fault gouge from deep drilling and implications for fault maturity.Minerals,8(9):393
    Lavallée Y,Mitchell TM,Heap MJ,Vasseur J,Hess KU,Hirose T and Dingwell DB.2012.Experimental generation of volcanic pseudotachylytes:Constraining rheology.Journal of Structural Geology,38:222-233
    Leroux H,Doukhan JC and Guyot F.2000.Metal-silicate interaction in quenched shock-induced melt of the Tenham L6-chondrite.Earth and Planetary Science Letters,179(3-4):477-487
    Li HB,Wang ZX,Fu XF,Hou LW,Si JL,Qiu ZL,Li N and Wu FY.2008.The surface rupture zone distribution of the Wenchuan earthquake(MS8.0)happened on May 12th,2008.Geology in China,35(5):803-813(in Chinese with English abstract)
    Li HB,Xu ZQ,Wang H,Zhang L,He XL,Si JL and Sun ZM.2018.Fault behavior,physical properties and seismic activity of the Wenchuan earthquake fault zone:Evidences from the Wenchuan earthquake Fault Scientific Drilling project(WFSD).Chinese Journal of Geophysics,61(5):1680-1697(in Chinese with English abstract)
    Li HX,Xin Y,Zhang DM,Li JZ and Xiong JY.2014.Influencing factors of iron precipitation of slag under reducing conditions.Journal of China Coal Society,39(7):1372-1378(in Chinese with English abstract)
    Li J and Agee CB.1996.Geochemistry of mantle-core differentiation at high pressure.Nature,381(6584):686-689
    Li Y,Zhou RJ,Densmore AL and Ellis MA.2006.Geomorphic evidence for the Late Cenozoic strike-slipping and thrusting in Longmen Mountain at the eastern margin of the Tibetan Plateau.Quaternary Sciences,26(1):40-51(in Chinese with English abstract)
    Lin AM.1994.Glassy pseudotachylyte veins from the Fuyun fault zone,Northwest China.Journal of Structural Geology,16(1):71-83
    Lin AM.2008.Fossil Earthquakes:The Formation and Preservation of Pseudotachylytes.Beijing:Higher Education Press,1-321(in Chinese)
    Liu J,Li HB,Zhang JJ and Zhang B.2016.Origin and formation of carbonaceous material veins in the 2008 Wenchuan earthquake fault zone.Earth,Planets and Space,68:19
    Man Y,Feng JX,Li FJ,Ge Q,Chen YM and Zhou JZ.2014.Influence of temperature and time on reduction behavior in iron ore-coal composite pellets.Powder Technology,256:361-366
    Mitchell TM,Toy V,Di Toro G,Renner J and Sibson RH.2016.Fault welding by pseudotachylyte formation.Geology,44(12):1059-1062
    Mizoguchi K,Hirose T,Shimamoto T and Fukuyama E.2007.Reconstruction of seismic faulting by high-velocity friction experiments:An example of the 1995 Kobe earthquake.Geophysical Research Letters,34(1):L01308
    Mizoguchi K,Hirose T,Shimamoto T and Fukuyama E.2009.Highvelocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault,Southwest Japan.Tectonophysics,471(3-4):285-296
    Nagata T,Fisher RM and Schwerer FC.1972.Lunar rock magnetism.The Moon,4(1-2):160-186
    Nakamura N,Hirose T and Borradaile GJ.2002.Laboratory verification of submicron magnetite production in pseudotachylytes:Relevance for paleointensity studies.Earth and Planetary Science Letters,201(1):13-18
    O’Hara K.2005.Evaluation of asperity-scale temperature effects during seismic slip.Journal of Structural Geology,27(10):1892-1898
    Pei JL,Zhou ZZ,Dong SG and Tang L.2014.Magnetic evidence revealing frictional heating from fault rocks in granites.Tectonophysics,637:207-217
    Proctor B and Lockner DA.2016.Pseudotachylyte increases the post-slip strength of faults.Geology,44(12):1003-1006
    Roberts AP,Cui YL and Verosub KL.1995.Wasp-waisted hysteresis loops:Mineral magnetic characteristics and discrimination of components in mixed magnetic systems.Journal of Geophysical Research:Solid Earth,100(B9):17909-17924
    Si JL,Li HB,Kuo LW,Huang JR,Song SR,Pei JL,Wang H,Song L,Fang JN and Sheu HS.2018.Carbonaceous materials in the Longmenshan fault belt zone:3.Records of seismic slip from the trench and implications for faulting mechanisms.Minerals,8(10):457
    Sibson RH.1975.Generation of pseudotachylyte by ancient seismic faulting.Geophysical Journal International,43(3):775-794
    Sibson RH and Toy VG.2006.The habitat of fault-generated pseudotachylyte:Presence vs.absence of friction-melt.In:Abercrombie R,Mc Garr A,Kanamori H and Di Toro G(eds.).Earthquakes:Radiated Energy and the Physics of Faulting.Washington,DC:American Geophysical Union,153-166
    St9ffler D,Keil K and Scott ERD.1991.Hock metamorphism of ordinary chondrites.Geochimica et Cosmochimica Acta,55(12):3845-3867
    Tanikawa W,Mishima T,Hirono T,Soh W and Song SR.2008.High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu fault in Taiwan.Earth and Planetary Science Letters,272(1-2):372-381
    Tauxe L,Mullender TAT and Pick T.1996.Potbellies,wasp-waists,and superparamagnetism in magnetic hysteresis.Journal of Geophysical Research:Solid Earth,101(B1):571-583
    Valipour MS,Hashemi HYM and Saboohi Y.2006.Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen,water vapor,carbon monoxide and carbon dioxide:An isothermal study.Advanced Powder Technology,17(3):277-295
    Wang H,Li HB,Janssen C,Sun ZM and Si JL.2015.Multiple generations of pseudotachylyte in the Wenchuan fault zone and their implications for coseismic weakening.Journal of Structural Geology,74:159-171
    Wang H and Li HB.2019.Seismic slip records preserved in fault rocks.Acta Geoscientica Sinica,40(1):135-156(in Chinese with English abstract)
    Wang H,Li HB,Si JL,Zhang L and Sun ZM.2019.Geochemical features of the pseudotachylytes in the Longmen Shan thrust belt,eastern Tibet.Quaternary International,doi.org/10.1016/j.quaint.2018.12.030
    Xu XZ.2009.Origin of the Kangjinla podiform chromite deposit and mantle peridotite,South Tibet.Ph.D.Dissertation.Beijing:Chinese Academy of Geological Sciences,1-145(in Chinese with English summary)
    Xu XZ,Yang JS,Robinson PT,Xiong FH,Ba DZ and Guo GL.2015.Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite,Tibet.Gondwana Research,27(2):686-700
    Xu ZQ,Li HB and Wu ZL.2008.Wenchuan earthquake and scientific drilling.Acta Geologica Sinica,82(12):1613-1622(in Chinese with English abstract)
    Yang T,Chen JY,Xu HR and Dekkers MJ.2019.High-velocity friction experiments indicate magnetic enhancement and softening of fault gouges during seismic slip.Journal of Geophysical Research:Solid Earth,124(1):26-43
    Yuan RM,Deng QH,Cunningham D,Xu C,Xu XW and Chang CP.2013.Density distribution of landslides triggered by the 2008Wenchuan earthquake and their relationships to peak ground acceleration.Bulletin of the Seismological Society of America,103(4):2344-2355
    Yuan RM,Deng QH,Cunningham D,Han ZJ,Zhang DL and Zhang BL.2016.Newmark displacement model for landslides induced by the 2013 MS7.0 Lushan earthquake,China.Frontiers of Earth Science,10(4):740-750
    Zhang CX,Liu QS,Huang BC and Su YL.2010.Magnetic enhancement upon heating of environmentally polluted samples containing haematite and iron.Geophysical Journal International,181:1381-1394
    Zhang L.2017.Rock magnetic record of earthquake faulting within WFSD-2 borehole cores from the Longmen Shan thrust belt and its implications.Ph.D.Dissertation.Wuhan:China University of Geosciences(in Chinese with English summary)
    Zhang L,Sun ZM,Li HB,Zhao LS,Song SR,Chou YM,Cao Y,Ye XZ,Wang H and He XL.2017.Rock record and magnetic response to large earthquakes within Wenchuan Earthquake Fault Scientific Drilling cores.Geochemistry,Geophysics,Geosystems,18(5):1889-1906
    Zhang L,Sun ZM,Li HB,Zhao LS,Cao Y,Ye XZ,Wang LZ,Wang H,He XL,Han S,Bai MK,Ge CL and Zhao Y.2017.Magnetic susceptibility of WFSD-2 borehole cores from the Longmenshan thrust belt and its implications for great seismic activity.Chinese Journal of Geophysics,60(1):225-239(in Chinese with English abstract)
    Zhang L,Li HB,Sun ZM,Chou YM,Cao Y and Wang H.2018.Metallic iron formed by melting:A new mechanism for magnetic highs in pseudotachylyte.Geology,46(9):779-782
    Zhang L,Li HB,Sun ZM,Chou YM,Cao Y,Wang H,Ye XZ and He XL.2018.Rock magnetic evidence for the seismogenic setting of large earthquakes in the Longmen Shan fault zone.Chinese Journal of Geophysics,61(5):1715-1727(in Chinese with English abstract)
    Zhang W,Li HB,Huang Y,Si JL,Liu DL,Li Y,Wang H,Yang Gand Sun LW.2012.Lithologic characteristics and fault zone structure revealed by No.2 Hole cores of the Wenchuan Earthquake Fault Zone Scientific Drilling(WFSD-2).Geological Bulletin of China,31(8):1201-1218(in Chinese with English abstract)
    Zheng Y,Li HB,Sun ZM,Wang H,Zhang JJ,Li CL and Cao Y.2016.New geochronology constraints on timing and depth of the ancient earthquakes along the Longmen Shan fault belt,eastern Tibet.Tectonics,35(12):2781-2806
    白文吉,任玉峰,杨经绥,方青松,颜秉刚,戎合.2006.记录地幔中存在氧元素的自然铁-方铁矿组合.地球学报,27(1):43-49
    冯杨洋,于常青,范柱国,宋丽蓉,梁姗姗,何俊杰,梅中锋.2016.从反射地震剖面中认识芦山地区的地壳精细结构和构造.地球物理学报,59(9):3248-3259
    纪新林,潘永信.2011.陨石磁学研究.地球物理学进展,26(6):1983-1992
    李海兵,王宗秀,付小方,侯立玮,司家亮,邱祝礼,李宁,吴富峣.2008.2008年5月12日汶川地震(MS8.0)地表破裂带的分布特征.中国地质,35(5):803-813
    李海兵,许志琴,王焕,张蕾,何祥丽,司家亮,孙知明.2018.汶川地震断裂带滑移行为、物理性质及其大地震活动性---来自汶川地震断裂带科学钻探的证据.地球物理学报,61(5):1680-1697
    李寒旭,辛宇,张冬梅,李金知,熊金钰.2014.还原性气氛下熔渣析铁的影响因素.煤炭学报,39(7):1372-1378
    李勇,周荣军,Densmore AL,Ellis MA.2006.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志.第四纪研究,26(1):40-51
    林爱明.2008.地震化石:假熔岩的形成与保存.北京:高等教育出版社,1-321
    王焕,李海兵.2019.断裂带中古地震滑动的岩石记录.地球学报,40(1):135-156
    徐向珍.2009.藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究.博士学位论文.北京:中国地质科学院,1-145
    许志琴,李海兵,吴忠良.2008.汶川地震和科学钻探.地质学报,82(12):1613-1622
    张蕾.2017.龙门山构造带WFSD-2钻孔岩心地震断裂作用的岩石磁学记录及其指示意义.博士学位论文.武汉:中国地质大学
    张蕾,孙知明,李海兵,赵来时,曹勇,叶小舟,王雷振,王焕,何祥丽,韩帅,白明坤,葛成隆,赵越.2017.龙门山构造带WFSD-2钻孔岩心磁化率特征及其对大地震活动的响应.地球物理学报,60(1):225-239
    张蕾,李海兵,孙知明,周祐民,曹勇,王焕,叶小舟,何祥丽.2018.龙门山断裂带大地震孕震环境的岩石磁学证据.地球物理学报,61(5):1715-1727
    张伟,李海兵,黄尧,司家亮,刘栋梁,李勇,王焕,杨光,孙立文.2012.四川汶川地震断裂带科学钻探2号孔(WFSD-2)岩性特征和断裂带的结构.地质通报,31(8):1201-1218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700