用户名: 密码: 验证码:
弓长岭东南区塌陷坑后续开采岩移规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Strata movement law of subsequent mining of collapse pit in southeast mining area of Gongchangling iron mine
  • 作者:何荣兴 ; 付煜 ; 任凤玉 ; 宋德林 ; 刘洋 ; 谭宝会
  • 英文作者:HE Rongxing;FU Yu;REN Fengyu;SONG Delin;LIU Yang;TAN Baohui;College of Resources and Civil Engineering,Northeastern University;College of Mining and Coal,Inner Mongolia University of Science and Technology;
  • 关键词:塌陷坑 ; 岩移 ; 上盘渐进崩落 ; 废石充填
  • 英文关键词:collapse pit;;rock movement;;progressive caving in the hanging wall;;filling with waste rock
  • 中文刊名:KSYL
  • 英文刊名:Journal of Mining & Safety Engineering
  • 机构:东北大学资源与土木工程学院;内蒙古科技大学矿业与煤炭学院;
  • 出版日期:2019-05-15
  • 出版单位:采矿与安全工程学报
  • 年:2019
  • 期:v.36;No.144
  • 基金:“十三五”国家重点研发计划项目(2016YFC0801604);; 国家自然科学基金重点项目(51534003);; 辽宁省自然科学基金面上项目(20170540327)
  • 语种:中文;
  • 页:KSYL201903013
  • 页数:9
  • CN:03
  • ISSN:32-1760/TD
  • 分类号:103-110+133
摘要
弓长岭东南区分上、下含铁带,上含铁带采用露天开采,下含铁带采用地下开采并形成地表塌陷坑,上、下含铁带采深形成300 m的高差,针对此技术条件,开展下含铁带继续下采的岩移规律和不影响露天开采的极限采深的研究。利用FLAC3D软件模拟分析了有、无散体补充条件下塌陷坑上盘岩体的岩移规律,塌陷坑上盘岩移曲线存在明显的分区特征,相同监测点的位移量随着采深的增加而增大,补充散体对于控制水平变形、倾斜、曲率等岩移指标作用明显。以露天采场内不出现危险移动变形指标为原则,在有、无散体补充条件下,下含铁带极限采深分别为260,240m,即开采至90,110m水平。根据弓长岭塌陷坑条件,考虑坑内散体和补充散体对上盘岩体的被动侧压力作用,改进上盘渐进崩落模型,计算得极限开采水平为107 m水平。根据数值模拟和理论推导的结果,综合确定下含铁带极限开采水平为110m。根据研究成果,提出将上含铁带露天采场剥离废石充填下含铁带塌陷坑的控制方案,保证了露天、地下的协同开采,控制了地下开采的塌陷范围,减小了露天废石的占地费用,取得了较好的应用效果。
        The southeast area of Gongchangling is divided into the upper and lower iron-bearing belts.Open pit mining is adopted in the upper belt, while underground mining is adopted in the lower one and collapse pits have been formed, which results in the height difference of 300 m between the upper and lower iron-bearing belts. In view of the technical conditions, the movement law of rocks in the lower belt and the ultimate mining depth without affecting the open-pit mining are studied. The movement law of rocks in the hanging wall of collapse pits with or without supplemental granular rock is separately simulated through FLAC3 D. The analysis shows that the rock movement curve has obvious zoning characteristics, and the displacement of the same monitoring point increases with mining depth. The supplemental granular rock has an obvious effect on controlling the rock movement indicators, in controlling horizontal displacement, inclination, curvature. With the principle of preventing risk movement and deformation, the limit mining depth in the lower iron-bearing belt was 260 m and 240 m for the conditions of having supplemental granular rock and not, respectively. That is, the mining is to 90 m and 110 m. According to the conditions of collapse pit in Gongchangling, considering the passive lateral pressure of the granular rock in the pit and the supplemental one on the hanging wall, mechanical model of limiting equilibrium analysis of progressive caving in the hanging wall has been modified and the ultimate mining level has been calculated to be 107 m. The limit mining level in the lower iron-bearing belt is 110 m according to the result of numerical simulation and theoretical calculation. The scheme to fill the collapse pit with the stripped waste rock from the open-pit mine has been proposed according to the research results, which ensures the cooperative mining of the open pit and the underground, controls the subsidence range of the underground mining, and reduces the occupation cost of waste rock in the open-pit mining. Good application results have been obtained.
引文
[1]袁仁茂,马凤山,邓清海,等.急倾斜厚大金属矿山地下开挖岩移发生机理[J].中国地质灾害与防治学报,2008,19(1):62-67.YUAN Renmao,MA Fengshan,DENG Qinghai,et al.Mechanism of ground movement induced by underground mining of metal deposit with steep of occurrence and large thickness[J].The Chinese Journal of Geological Hazard and Control,2008,19(1):62-67.
    [2]赵海军,马凤山,丁德民,等.急倾斜矿体开采岩体移动规律与变形机理[J].中南大学学报(自然科学版),2009,40(5):1423-1429.ZHAO Haijun,MA Fengshan,DING Demin,et al.Law of ground movement and its deformation mechanism induced by mining steep deposit[J].Journal of Central South University(Science and Technology),2009,40(5):1423-1429.
    [3]戴华阳,蔡美峰,王金庄.基于倾角变化的最大下沉值计算方法[J].岩石力学与工程学报,2003,22(7):1083-1087.DAI Huayang,CAI Meifeng,WANG Jinzhuang.Calculation for maximum subsidence induced by coal seam mining with different dip angles[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(7):1083-1087.
    [4]戴华阳,王金庄,蔡美峰.岩层与地表移动的矢量预计方法[J].煤炭学报,2002,27(5):473-478.DAI Huayang,WANG Jinzhuang,CAI Meifeng.Extration-vectorized prediction method for rock and surface movement[J].Journal of China Coal Society,2002,27(5):473-478.
    [5]DAI Huayang,WANG Jinzhuang,CAI Meifeng,et al.Seam dip angle based mining subsidence model and its application[J].International Journal of Rock Mechanics&Mining Sciece,2002,39(1):115-123.
    [6]GUO Guangli,FENG Wenkai,ZHA Jianfeng,et al.Subsidence control and farmland conservation by solid backfilling mining technology[J].Transactions of Nonferrous Metals Society of China,2011,21(Sup 3):665-669.
    [7]ZHANG Jixiong,ZHOU Nan,HUANG Yanli,et al.Impact law of the bulk ratio of backfilling body to overlying strata movement in fully mechanized backfilling mining[J].Journal of Mining Science,2011,47(1):73-84.
    [8]GUO Guangli,ZHA Jianfeng,MIAO Xiexing,et al.Similar material and numerical simulation of strata movement laws with long wall fully mechanized gangue backfilling[J].Procedia Earth and Planetary Science,2009(1):1089-1094.
    [9]YAO Yuan,CUI Zengdi,WU Ruzhou.Development and challenges on mining backfill technology[J].Journal of Materials Science Research,2012,1(4):73-78.
    [10]HUANG Yanli,ZHANG Jixiong,ZHANG Qiang,et al.Backfilling technology of substituting waste and fly ash for coal underground in China coal mining area[J].Environmental Engineering and Management Journal,2011,10(6):769-775.
    [11]GUO Guangli,ZHU Xiaojun,ZHA Jianfeng,et al.Subsidence prediction method based on equivalent mining height theory for solid backfilling mining[J].Transactions of Nonferrous Metals Society of China,2014,24:3302-3308.
    [12]缪协兴,黄艳利,巨峰,等.密实充填采煤的岩层移动理论研究[J].中国矿业大学学报,2012,41(6):863-867.MIAO Xiexing,HUANG Yanli,JU Feng,et al.Strata movement theory of dense back filling mining[J].Journal of China University of Mining&Technolog,2012,41(6):863-867.
    [13]李海英,任凤玉,陈晓云,等.深部开采陷落范围的预测与控制方法[J].东北大学学报(自然科学版),2012,33(11):1624-1627.LI Haiying,REN Fengyu,CHEN Xiaoyun,et al.The method for predicting and controlling the range of surface subsidence during deep ore-body mining[J].Journal of Northeastern University(Natural Science),2012,33(11):1624-1627.
    [14]郑建明,任凤玉,唐烈先.西石门铁矿散体临界深度预测与地表塌陷范围控制[J].采矿与安全工程学报,2014,31(4):631-634.ZHENG Jianming,REN Fengyu,TANG Liexian.Critical depth prediction and surface subsidence range controlling based on Xishimen mine[J].Journal of Mining&Safety Engineering,2014,31(4):631-634.
    [15]Itasca Consulting Group Inc.FLAC3D(Fast Lagranginan Analysis of Continua in 3 Dimensions)[M].Version3.0.Minneapolis:Itasca Consulting Group Inc,2005.
    [16]周宗红,侯克鹏,任凤玉.跑马坪铅锌矿采空区稳定性分析及控制方法[J].采矿与安全工程学报,2011,30(6):863-867.ZHOU Zonghong,HOU Kepeng,REN Fengyu.Stability analysis of large-scale mined-out area and its control methods in Paomaping lead-zinc deposit[J].Journal of Mining&Safety Engineering,2011,30(6):863-867.
    [17]陈陆望,孙瑞,白世伟,等.近地表倾斜矿体开采地表及覆岩变形破坏模拟[J].采矿与安全工程学报,2014,31(2):243-248.CHEN Luwang,SUN Rui,BAI Shiwei,et al.Simulation on deformation and failure of ground surface and overlying rock caused by extracting inclined ore body near surface[J].Journal of Mining&Safety Engineering,2014,31(2):243-248.
    [18]HOEK E,BROWN E T.Empirical strength criterion for rock mass[J].Journal of the Geotechnical Engineering Division,1980,106:1013-1035.
    [19]HOEK E,BROWN E T.Practical estimates of rock mass strength[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165-1187.
    [20]何国清,杨伦,凌庚娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1994:121-127.
    [21]BRADY B H G,BROWN E T.Rock mechanics for underground mining[M].London:George Allen&Unwin,1985:454-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700