用户名: 密码: 验证码:
复合材料层合结构破坏机理及压溃吸能特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Damage mechanism and energy-absorbing characteristics of composite laminated structures
  • 作者:牟浩蕾 ; 张雪晗 ; 宋东方 ; 冯振宇 ; 解江
  • 英文作者:MOU Haolei;ZHANG Xuehan;SONG Dongfang;FENG Zhenyu;XIE Jiang;Key Laboratory of Civil Aircraft Airworthiness Technology,CAAC,Civil Aviation University of China;
  • 关键词:复合材料层合结构 ; 断口形貌 ; 细观破坏机理 ; 宏观破坏模式 ; 吸能特性
  • 英文关键词:composite laminated structure;;fracture surface morphology;;mesoscopic failure mechanism;;macro damage mode;;energy-absorbing characteristics
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:中国民航大学民航民用航空器适航审定技术重点实验室;
  • 出版日期:2018-11-28
  • 出版单位:振动与冲击
  • 年:2018
  • 期:v.37;No.330
  • 基金:中国民航局科技项目(MHRD20140207);; 中央高校基本科研业务费中国民航大学专项项目(3122016C011; 3122017020);; 中国民航大学科研启动基金(2017QD10S);中国民航大学天津市民用航空器适航与维修重点实验室开放基金资助
  • 语种:中文;
  • 页:ZDCJ201822029
  • 页数:8
  • CN:22
  • ISSN:31-1316/TU
  • 分类号:199-205+218
摘要
针对纤维增强复合材料层合试验样件,对[90]_(16)和[0]_(16)试验样件分别进行拉伸、压缩试验,对[±45]_(4s)试验样件进行剪切试验,分析其破坏模式,通过SEM扫描电镜观察试验样件断口微观形貌,揭示其细观破坏机理。针对纤维增强复合材料层合薄壁结构,对[±45/0/0/90/0]_s圆管、[0/90]_(3s)圆管、[0/90]_(3s)方管和[±45]_(3s)方管进行准静态轴向压溃试验,分析其宏观破坏模式及吸能特性。结果表明:宏观破坏模式是多种细观破坏机理共同作用的结果,包含纤维断裂、基体变形与开裂、层间与层内裂纹扩展等;[±45/0/0/90/0]s圆管为横向剪切破坏模式,比吸能最大;[0/90]_(3s)圆管为层束弯曲失效模式,比吸能次之;[0/90]_(3s)方管为层束弯曲失效模式,比吸能第三大;[±45]_(3s)方管为局部屈曲失效模式,比吸能最小。不同铺层方式复合材料层合薄壁圆管和方管压溃破坏失效模式差异较大,比吸能差距也较大,通过合理设计可以改变复合材料层合薄壁结构破坏模式,改进其吸能特性。
        For the fiber-reinforced composite laminates,tensile and compressive tests were carried out on the composite unidirectional laminates of [90]_(16) and [0]_(16),and shear tests were conducted on the composite laminates of[± 45]_(4s). The fracture surface morphology of specimens was observed by scanning electron microscope( SEM),and the failure modes and mesoscopic failure mechanism of specimens were analyzed. For fiber-reinforced composite laminated thin-walled structures,the quasi-static axial crushing tests were also conducted on the circular tubes of [± 45/0/0/90/0]_s and[0/90]_(3s),and square tubes of [0/90]_(3s) and [± 45]_(3s),and the macro damage modes and energy-absorbing characteristics were further investigated. The results show that macro damage modes are the collective result of variety of mesoscopic failure mechanisms,such as fiber fracture,matrix deformation and cracking,interlayer and layer cracks propagation,and so on. The circular tube of [± 45/0/0/90/0]shas the transverse shearing failure mode with the largest SEA,The circular tube of [0/90]_(3s) has the layer beam bending failure mode with the second largest specific energy absorption( SEA). The square tube of [0/90]_(3s) has the layer beam bending failure mode with the third largest SEA. The square tube of [± 45]_(3s) has the local buckling failure mode with the least SEA. The failure modes of composite laminated thin-walled circular tubes and square tubes with different layup sequencing are significantly different,and the values of SEA are also quite different. The failure modes of composite laminated thin-wall structures can be altered by reasonable design,and the energy-absorbing characteristics might further be improved.
引文
[1] SIROMANI D,HENDERSON G,MIKITA D,et al. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression[J]. Composites Part A,2014,64(21):25-35.
    [2] CAPRIO F D,IGNARRA M,MARULO F,et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering,2016,167:88-96.
    [3] CHIARA B. Experimental investigation of the collapse modes and energy absorption characteristics of composite tubes[J].International Journal of Crashworthiness, 2009, 14(4):365-378.
    [4]陈永刚,许亚洪,益小苏.引发角对碳纤维/环氧复合材料圆管件轴向压溃性能的影响[J].材料工程,2004(12):36-39.CHEN Yonggang, XU Yahong, YI Xiaosu. Influence of trigger mechanism on axial crashing behavior of carbon/epoxy circular tubes[J]. Journal of Materials Engineering,2004(12):36-39.
    [5] HADAVINIA H,GHASEMNEJAD H. Effects of Mode-I and Mode-II interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections[J].Composite Structures,2009,89(2):303-314.
    [6] LEE K S,IM K H,YANG I Y. Experimental evaluation of the crashworthiness for lightweight composite structural member[J]. Thin Solid Films, 2010, 518(20):5637-5641.
    [7] OSTRE B,BOUVET C,MINOT C,et al. Experimental analysis of CFRP laminates subjected to compression after edge impact[J]. Composite Structures,2016,152:767-778.
    [8]郑金鑫,于增信.层状纤维圆柱壳轴向压缩破损实验研究[J].实验力学,1999(2):237-242.ZHENG Jinxin,YU Zengxin,An experimental study on the progressive damage of fiber laminated cylindrical shells under axial compression[J]. Journal of Experimental Mechanics,1999(2):237-242.
    [9] PALANIVELU S,PAEPEGEN W V,DEGRIECK J,et al.Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures[J]. Polymer Testing,2010,29(3):381-396.
    [10]宋宏伟,万志敏,杜星文.玻璃/环氧圆柱管能量吸收细观机理[J].复合材料学报,2002,19(2):75-79.SONG Hongwei,WANG Zhimin,DU Xingwen. Microscopic mechanism of energy absorption behavior for glass/epoxy tubes under impact loading[J]. Acta Materiae Compositae Sinica,2002,19(2):75-79.
    [11]陈永刚,益小苏,许亚洪,等. Carbon-Epoxy圆管件的静态吸能特征[J].航空学报,2005,26(2):246-249.CHEN Yonggang, YI Xiaosu, XU Yahong, et al. Static energy absorption characteristics of carbon-epoxy tubes[J].Acta Aeronautica Et Astronautica Sinica,2005,26(2):246-249.
    [12]吴盼,阎建华,俞建勇,等.碳纤/环氧复合材料层合板低速冲击损伤机理研究[J].玻璃钢/复合材料,2016(3):31-37.WU Pan,YAN Jianhua,YU Jianyong,et al. Low-velocity impact damage mechanism of carbon/epoxy composite laminates[J]. Fiber Reinforced Plastics/Composites,2016(3):31-37.
    [13]王璠,何一帆,宋毅,等.引发方式、铺层对纤维增强复合材料圆柱壳吸能特性影响的冲击试验研究[J].振动工程学报,2013,26(1):33-40.WANG Fan, HE Yifan, SONG Yi, et al. The impact experimental study of evoking type and layup type on absorption energy of fiber reinforced composite cylindrical shell[J]. Journal of Vibration Engineering,2013,26(1):33-40.
    [14]冯振宇,赵彦强,陈艳芬,等.含不确定性参数的复合材料薄壁结构吸能特性评估方法研究[J].振动与冲击,2015,34(12):7-12.FENG Zhenyu, ZHAO Yanqiang, CHEN Yanfen, et al.Evaluation method for energy-absorbing composite structures with uncertain parameters[J]. Journal of Vibration and Shock,2015,34(12):7-12.
    [15]解江,冯振宇,赵彦强,等.含随机不确定参数复合材料薄壁结构吸能特性评估方法研究[J].振动与冲击,2015,34(22):109-114.XIE Jiang, FENG Zhenyu, ZHAO Yanqiang, et al.Evaluation method based on probability for energy-absorbing composite structures with uncertain parameters[J]. Journal of Vibration and Shock,2015,34(22):109-114.
    [16] MOU H L,ZOU T C,FENG Z Y,et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures,2016,13(6):1186-1202.
    [17]杜星文,宋宏伟.圆柱壳冲击动力学及耐撞性设计[M].北京:科学出版社,2004.
    [18] HULL D. A unified approach to progressive crushing of fiberreinforced composite tubes[J]. Composites Science&Technology,1991,40(4):377-421.
    [19] MAMALIS A G,ROBINSON M,MANOLAKOS D E,et al.Crashworthy capability of composite material structures[J].Composite Structures,1997,37(2):109-134.
    [20] FARLEY G L,JONES R M. Crushing characteristics of continuous fiber-reinforced composite tubes[J]. Journal of Composite Materials,1992,26(1):37-50.
    [21]定向纤维增强塑料拉伸性能试验方法:GB/T 3354—1999[S].北京:中国标准出版社,2005.
    [22]单向纤维增强塑料平板压缩性能试验方法:GB/T 3856—2005[S].北京:中国标准出版社,2005.
    [23]纤维增强塑料纵横剪切试验方法:GB/T 3355—2005[S].北京:中国标准出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700