用户名: 密码: 验证码:
基于线性路径跟踪控制的换道避撞控制策略研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Collision Avoidance by Lane Changing Based on Linear Path-following Control
  • 作者:刘志强 ; 王一凡 ; 吴雪刚 ; 张春雷 ; 倪捷
  • 英文作者:LIU Zhi-qiang;WANG Yi-fan;WU Xue-gang;ZHANG Chun-lei;NI Jie;School of Automotive and Transportation Engineering, Jiangsu University;
  • 关键词:汽车工程 ; 追尾避撞 ; 线性路径跟踪控制 ; 换道避撞 ; 危险评估 ; 横向加速度 ; 期望横向位移
  • 英文关键词:automotive engineering;;rear-end collision avoidance;;linear path-following control;;collision avoidance by lane changing;;threat assessment;;lateral acceleration;;required lateral displacement
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:江苏大学汽车与交通工程学院;
  • 出版日期:2019-06-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.190
  • 基金:国家自然科学基金项目(61403172);; 道路交通安全公安部重点实验室项目(2016ZDSYSKFKT09)
  • 语种:中文;
  • 页:ZGGL201906010
  • 页数:10
  • CN:06
  • ISSN:61-1313/U
  • 分类号:90-99
摘要
为实现车辆自主避撞,改善道路交通安全状况,提出一种基于线性路径跟踪控制的换道避撞控制策略。为实时确定制动和换道时机,获取跟车状态下自车和前车车速、加速度、相对距离以及驾驶人制动反应时间计算制动安全距离和换道安全距离,并在此基础上分别引入制动危险系数B和换道危险系数S评估制动与换道风险,使得车辆发生追尾碰撞的危险程度和主动干预阈值更直观。根据车辆期望横向加速度和期望横向位移的变化特性,采用5次多项式法规划符合驾驶人换道避撞特性的避撞路径。为保证换道避撞过程中驾驶人的安全舒适,采用最大横向加速度约束换道避撞轨迹。为实现对换道避撞路径的线性跟踪控制,保证车辆的操纵稳定性和横摆稳定性,基于车辆稳态动力学模型建立前馈控制,结合线性反馈控制消除换道路径的位置和横摆角偏差,修正参考路径实现直车道场景追尾避撞控制。仿真和实车交叉验证试验表明:根据车辆期望横向加速度和期望横向位移建立的符合驾驶人换道避撞特性的五次多项式换道路径与驾驶人实际换道避撞路径基本吻合,结合碰撞时间和车间时距的制动避撞控制策略能够在保证车辆行驶安全舒适性的同时有效避免车辆追尾碰撞,减少交通事故的发生。
        To avoid the collision of autonomous vehicles and improve the road traffic safety, a rear-end collision avoidance strategy by lane changing based on linear path-following control is proposed. In this system, the speed, acceleration, relative distance between the subject and lead vehicles under car-following condition, and the driver's reaction time were obtained to calculate the safe braking and safe lane-changing distances, to determine the time required for the respective actions. On this basis, the braking hazard coefficient B and the lane-change risk coefficient S were introduced to evaluate the risk in braking and lane changing, respectively. This makes the risk degree of rear-end collision and the threshold of active intervention more intuitive. According to the variation in the expected lateral acceleration and lateral displacement of the vehicle, the 5 times polynomial method was used to plan the collision avoidance path, adaptive to the driver's lane-changing behavior. To ensure the safety and comfort of the driver during the lane-changing collision avoidance process, the maximum lateral acceleration of the trajectory was constrained. Linear tracking control was adopted to avoid collision and ensure the stability of the vehicle. To achieve this, the feed-forward control strategy was established based on the steady-state dynamic model of the vehicle, and the position and yaw angle deviations of the lane-changing path were eliminated by combining the linear feedback and feed-forward controls. Correct the reference path to realize the collision avoidance control of the straight lane scene. The experiments by simulation and real vehicle cross-validation demonstrate that the fifth-order polynomial lane-changing path based on the driver's desired lateral acceleration and the expected lateral displacement is in good agreement with the driver's actual collision avoidance path. The braking and collision avoidance strategy based on reaction time and workshop time interval can effectively avoid vehicle rear-end collisions and reduce the occurrence of traffic accidents, while ensuring the safety and comfort of the passengers.
引文
[1] 中华人民共和国国家统计局.中国统计年鉴2017[M].北京:中国统计出版社,2017.National Bureau of Statistics of P.R.China.China Statistical Yearbook 2017 [M].Beijing:China Statistics Press,2017.
    [2] FLANAGAN S R.Invited Commentary on “Center for Disease Control and Prevention Report to Congress:Traumatic Brain Injury in the United States:Epidemiology and Rehabilitation” [J].Archives of Physical Medicine and Rehabilitation,2015,96 (10):1753-1755.
    [3] BR?NNSTR?M M,COELINGH E,SJ?BERG J.Model-based Threat Assessment for Avoiding Arbitrary Vehicle Collisions [J].IEEE Transactions on Intelligent Transportation Systems,2010,11 (3):658-669.
    [4] 侯德藻,李克强,郑四发,等.汽车主动避撞系统中的报警方法及其关键技术[J].汽车工程,2002,24(5):438-441.HOU De-zao,LI Ke-qiang,ZHENG Si-fa,et al.The Warning Algorithm and Some Key Technologies of Vehicle Collision Avoidance System [J].Automotive Engineering,2002,24 (5):438-441.
    [5] KADE A.Automatic Time Headway Setting for Adaptive Cruise Control System [R].Washington DC:Patent and Trademark Office,2011.
    [6] AYRES T J,LI L,SCHLEUNING D,et al.Preferred Time-headway of Highway Drivers [C] // IEEE.Proceedings of the IEEE Intelligent Transportation Systems Conference.New York:IEEE,2001:826-829.
    [7] JANSSON J.Collision Avoidance Theory:with Application to Automotive Collision Mitigation [D].Linkoping:Linkoping University,2013.
    [8] 刘贵如,周鸣争,王陆林,等.城市工况下最小安全车距控制模型和避撞算法[J].汽车工程,2016,38(10):1200-1205.LIU Gui-ru,ZHOU Ming-zheng,WANG Lu-lin,et al.Minimum Safety Distance Control Model and Collision Avoidance Algorithm Under Urban Traffic Condition [J].Automotive Engineering,2016,38 (10):1200-1205.
    [9] 田彦涛,王晓玉,胡蕾蕾,等.电动汽车侧向换道行驶主动避撞控制算法[J].吉林大学学报:工学版,2016,46(5):1587-1594.TIAN Yan-tao,WANG Xiao-yu,HU Lei-lei,et al.Active Collision Avoidance Control Algorithm in Electric Vehicle Lateral Lane Changing [J].Journal of Jilin University:Engineering and Technology Edition,2016,46 (5):1587-1594.
    [10] 时恒,涂辉招,高坤.基于高逼真驾驶模拟器雾霾天气下跟驰行为分析[J].同济大学学报:自然科学版,2018,46(3):326-333.SHI Heng,TU Hui-zhao,GAO Kun.Analysis of Car Following Behaviors Under Hazy Weather Conditions Based on High Fidelity Driving Simulator [J].Journal of Tongji University:Natural Science,2018,46 (3):326-333.
    [11] 王雪松,朱美新,陈铭.驾驶员前向避撞行为特征的降维及多元方差分析[J].同济大学学报:自然科学版,2016,44(12):1858-1866.WANG Xue-song,ZHU Mei-xin,CHEN Ming.Dimensionality Reduction and Multivariate Analysis of Variance for Drivers’ Forward Collision Avoidance Behavior Characteristics [J].Journal of Tongji University:Natural Science,2016,44 (12):1858-1866.
    [12] GRAHAM R.Use of Auditory Icons as Emergency Warnings:Evaluation Within a Vehicle Collision Avoidance Application [J].Ergonomics,1999,42 (9):1233-1248.
    [13] JANSSON J,JOHANSSON J,GUSTAFSSON F.Decision Making for Collision Avoidance Systems [J].SAE Paper 2002-01-0403.
    [14] HUH K,SEO C,KIM S H,et al.An Experimental Investigation of a CW/CA System for Automobiles Using Hardware-in-the-loop Simulations [C] // IEEE.Proceedings of the 1999 American Control Conference.New York:IEEE,1999:724-728.
    [15] 王建强,迟瑞娟,张磊,等.适应驾驶员特性的汽车追尾报警-避撞算法研究[J].公路交通科技,2009,12(增1):7-12.WANG Jian-qiang,CHI Rui-juan,ZHANG Lei,et al.Study on Forward Collision Warning Avoidance Algorithm Based on Driver Characteristics Adaptation [J].Journal of Highway and Transportation Research and Development,2009,12 (S1):7-12.
    [16] 林庆峰,成波,屈肖蕾,等.基于驾驶员制动操作行为的车辆追尾预警算法[J].汽车工程,2012,34(3):232-235.LIN Qing-feng,CHENG Bo,QU Xiao-lei,et al.Vehicle Rear-end Warning Algorithm Based on Driver’s Braking Operation Behavior [J].Automotive Engineering,2012,34 (3):232-235.
    [17] 梁军,陈小波,程显毅,等.基于MAS和驾驶员行为的追尾预警模型[J].计算机工程,2009,35(10):176-178.LIANG Jun,CHEN Xiao-bo,CHENG Xian-yi,et al.Rear-end Alarm Model Based on MAS and Driver Behavior [J].Computer Engineering,2009,35 (10):176-178.
    [18] DELGADO G I,CASALLAS O R,JACINTO G E.Path Planning in Static Scenarios Using Image Processing and Cell Decomposition [J].IEEE International Autumn Meeting on Power,2015,17 (6):1-5.
    [19] HOSSAIN M A,FERDOUS I.Autonomous Robot Path Planning in Dynamic Environment Using a New Optimization Technique Inspired by Bacterial Foraging Technique [J].Robotics and Autonomous Systems,2015,64:137-141.
    [20] BERTSEKAS D P.Robust Shortest Path Planning and Semicontractive Dynamic Programming [J].Naval Research Logistics,2019,66 (1):15-37.
    [21] KIEFER R J,LEBLANC D J,FLANNAGAN C A.Developing an Inverse Time-to-collision Crash Alert Timing Approach Based on Drivers’ Last-second Braking and Steering Judgments [J].Accident Analysis & Prevention,2005,37 (2):295-303.
    [22] EIDEHALL A.Multi-target Threat Assessment for Automotive Applications [C] // IEEE.Proceedings of the 14th IEEE Intelligent Transportation Systems.New York:IEEE,2011:433-438.
    [23] BRANNSTROM M,COELINGH E,SJOBERG J.Model-based Threat Assessment for Avoiding Arbitrary Vehicle Collisions [J].IEEE Transactions on Intelligent Transportation Systems,2010,11 (3):658-669.
    [24] BR?NNSTR?M M,COELINGH E,SJ?BERG J.Decision-making on When to Brake and When to Steer to Avoid a Collision [J].International Journal of Vehicle Safety,2014,7 (1):87-106.
    [25] MADAS D,NOSRATINIA M,KESHAVARZ M,et al.On Path Planning Methods for Automotive Collision Avoidance [J].IEEE Intelligent Vehicles Symposium,2013,36 (1):931-937.
    [26] SONG X,CAO H,HUANG J.Influencing Factors Research on Vehicle Path Planning Based on Elastic Bands for Collision Avoidance [J].SAE International Journal of Passenger Cars-electronic and Electrical Systems,2012,5 (2):625-637.
    [27] HATTORI Y,ONO E,HOSOE S.Optimum Vehicle Trajectory Control for Obstacle Avoidance Problem [J].SAE Paper 2012-01-2015.
    [28] YOSHIDA H,SHINOHARA S,NAGAI M.Lane Change Steering Manoeuvre Using Model Predictive Control Theory [J].Vehicle System Dynamics,2008,46 (S1):669-681.
    [29] GILLESPIE T D.Fundamentals of Vehicle Dynamics [M].New York:Society of Automotive Engineers,1992.
    [30] 马莹,李克强,高峰,等.改进的有限时间最优预瞄横向控制器设计[J].汽车工程,2006,28(5):433-438.MA Ying,LI Ke-qiang,GAO Feng,et al.Design of an Improved Optimal Preview Lateral Controller [J].Automotive Engineering,2006,28 (5):433-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700