用户名: 密码: 验证码:
局部随机点蚀下圆管截面极限强度退化规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Degradation law of ultimate strength of tubular sections with random pitting corrosion in local region
  • 作者:王仁华 ; 郭海超
  • 英文作者:WANG Renhua;GUO Haichao;Department of Civil Engineering,Jiangsu University of Science and Technology;
  • 关键词:局部腐蚀 ; 随机点蚀 ; 圆管截面 ; 极限强度 ; 点蚀损伤 ; 强度退化
  • 英文关键词:localized corrosion;;random pitting corrosion;;tubular section;;ultimate strength;;pitting damage;;strength degradation
  • 中文刊名:HYGC
  • 英文刊名:The Ocean Engineering
  • 机构:江苏科技大学土木工程系;
  • 出版日期:2019-05-30
  • 出版单位:海洋工程
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金(51879124);; 江苏省自然科学基金项目(BK20151326);; 江苏省高校优秀中青年教师境外研修计划(2016)
  • 语种:中文;
  • 页:HYGC201903013
  • 页数:9
  • CN:03
  • ISSN:32-1423/P
  • 分类号:115-123
摘要
针对构件外表面局部区域遭受随机点蚀损伤的圆管截面,考虑点蚀随机特性的影响,建立包含点蚀坑细节的精细有限元模型;在多种腐蚀强度下,研究局部腐蚀的点蚀区分布位置(沿轴向和周向分布位置变化)及其形状(点蚀区长度和宽度独立或联合变化)影响轴压极限强度退化的规律;并比较局部随机点蚀与局部均匀腐蚀引起构件极限强度退化的差异。研究结果表明,尽管局部随机点蚀与最大初始几何缺陷的耦合作用会使极限强度的退化趋于严重,但是总体而言点蚀区分布位置变化对圆管极限强度的退化没有显著的影响。此外,同等腐蚀体积和腐蚀面积下,相比于长窄式局部腐蚀,短宽式局部腐蚀会引起更严重的极限强度退化,在严重腐蚀情形下后者导致的强度退化会高出25.5%;相比于局部均匀腐蚀,局部随机点蚀会导致更剧烈的极限强度退化,其不利影响可高出20.7%。
        Finite element( FE) model of tubular section,locally corroded in the external surface due to random pitting corrosion,was constructed with the detail of individual pit to reflect the random nature of pitting corrosion. Influences of location and shape of corroded region on ultimate strength degradation were studied under variant levels of corrosion intensities. In the numerical models for strength assessment,the location of corroded region altered along the length or hoop direction of tubular section. Whereupon the shape variation was the result of independent or combined change in the length and width of the corroded region. In view of the effects on the reduction of ultimate strength,comparisons were performed between two types of localized corrosion damage such as the localized random pitting and uniform corrosion. The results obtained show that the localized random pitting tends to cause more serious strength degradation when it is located on the region with the maximum initial geometrical imperfection. However,overall,there is no significant difference in the strength degradation due to the location variation of the corroded region. In addition,in the case with the same loss of corroded volume and area,the locally pitted area with a smaller length and a larger width causes a decrease of ultimate strength,larger than that with a larger length and a smaller width,up to 25.5% for the severe corrosion case. And the localized corrosion in the form of random pitting results in a strength reduction likely up to 20.7% larger than the uniform one.
引文
[1]赵冬岩,余建星,岳志勇,等.含缺陷海底管道屈曲稳定性的数值模拟[J].天津大学学报,2009,42(12):1067-1071.(ZHAO Dongyan,YU Jianxing,YUE Zhiyong,et al. Numerical simulations on buckling stability of subsea pipelines with imperfections[J]. Journal of Tianjin University,2009,42(12):1067-1071.(in Chinese))
    [2]崔铭伟,曹学文,封子艳.腐蚀坑形貌对油气管道失效压力的影响[J].船舶力学,2014,18(1-2):124-131.(CUI Mingwei,CAO Xuewen,FENG Ziyan. Corrosion pit morphology on the impact of oil and gas pipeline failure pressure[J].Journal of Ship Mechanics,2014,18(1-2):124-131.(in Chinese))
    [3]王仁华,方媛媛,林振东,等.点蚀损伤下海洋平台结构剩余强度的多尺度分析方法[J].工程力学,2016,33(1):238-245.(WANG Renhua,FANG Yuanyuan,LIN Zhendong,et al. Multi-scale analysis of residual strength of offshore platforms with pitting corrosion[J]. Engineering Mechanics,2016,33(1):238-245.(in Chinese))
    [4] SILVA J E,GARBATOV Y,GUEDES SOARES C. Ultimate strength assessment of rectangular steel plates subjected to a random localised corrosion degradation[J]. Engineering Structures,2013,52:295-305.
    [5] BHANDARI J,KHAN F,ABBASSI R,et al. Modelling of pitting corrosion in marine and offshore steel structures-A technical review[J]. Journal of Loss Prevention in the Process Industries,2015,37:39-62.
    [6] API-RP-2A-WSD,Planning,designing and constructing fixed offshore platforms—working stress design[S]. Washington D C:American Petroleum Institute,2014.
    [7] API/ASME,API 579-1/ASME FFS-1 fitness-for-service[S]. 2016.
    [8] SHI C,KARAGAH H,DAWOOD M,et al. Numerical investigation of H-shaped short steel piles with localized severe corrosion[J]. Engineering Structures,2014,73:114-124.
    [9] KARAGAH H,SHI C,DAWOOD M,et al. Experimental investigation of short steel columns with localized corrosion[J]. Thinwalled Structures,2015,87:191-199.
    [10] NAZARIA M,KHEDMATI M R,KHALAJ A F. A numerical investigation into ultimate strength and buckling behavior of locally corroded steel tubular members[J]. Latin American Journal of Solids and Structures,2014,11:1063-1076.
    [11] MOHD M H,LEE B J,CUI Y,et al. Residual strength of corroded subsea pipelines subject to combined internal pressure and bending moment[J]. Ships and Offshore Structures,2015,10(5):554-564.
    [12] AHN J H,CHOI W R,JEON S H,et al. Residual compressive strength of inclined steel tubular members with local corrosion[J]. Applied Ocean Research,2016,59:498-509.
    [13] ASME-B31G,Manual for determining the remaining strength of corroded pipelin[S]. 2012.
    [14] DNV-RP-F101,Corroded pipelines[S]. 2015.
    [15] CHOUCHAOUI B A,PICK R J. Behaviour of circumferentially aligned corrosion pits[J]. International Journal of Pressure Vessels and Piping,1994,57(2):187-200.
    [16] CHOUCHAOUI B A,PICK R J. Behaviour of longitudinally aligned corrosion pits[J]. International Journal of Pressure Vessels and Piping,1996,67(1):17-35.
    [17]张兆贵,崔铭伟.双点蚀缺陷管道剩余强度计算方法[J].腐蚀与防护,2015,36(8):759-765.(ZHANG Zhaogui,CUI Mingwei. Remaining strength calculation method of corroded pipeline with interaction of double pitting defects[J]. Corrosion&Procetion,2015,36(8):759-765.(in Chinese))
    [18]赵新伟,罗金恒,郑茂盛,等.点腐蚀损伤管道剩余强度的评价方法[J].机械工程材料,2006,30(6):26-29.(ZHAO Xinwei,LUO Jinheng,ZHENG Maosheng,et al. Residual strength assessment method of pipeline containing damage of pitting corrosion[J]. Material for Mechanical Engineering,2006,30(6):26-29.(in Chinese))
    [19] WANG H,YU Y,YU J,et al. Effect of 3D random pitting defects on the collapse pressure of pipe—Part I:Experiment[J].Thin-walled Structures,2018,129:512-526.
    [20] WANG H,YU Y,YU J,et al. Effect of 3D random pitting defects on the collapse pressure of pipe—Part II:Numerical analysis[J]. Thin-walled Structures,2018,129:527-541.
    [21]王仁华,仝泽军,郭海超,等.圆钢管截面极限强度受随机分布点蚀的影响研究[J].海洋工程,2018,36(6):101-108.(WANG Renhua,TONG Zejun,GUO Haichao,et al. Study on impact of randomly distributed pitting on ultimate strength of steel tubular sections[J]. The Ocean Engineering,2018,36(6):101-108.(in Chinese))
    [22]王仁华,方媛媛,窦培林,等.点蚀损伤下桩基式平台腿柱的轴压极限承载力研究[J].海洋工程,2015,33(3):29-35.(WANG Renhua,FANG Yuanyuan,DOU Peilin,et al. Investigation on ultimate strength of pile-foundation platform legs with pitting corrosion subjected to axial compression[J]. The Ocean Engineering,2015,33(3):29-35.(in Chinese))
    [23] WANG R H,SHENOI R A,SOBEY A. Ultimate strength assessment of plated steel structures with random pitting corrosion damage[J]. Journal of Constructional Steel Research,2018,143:331-342.
    [24]王仁华,孙洁,方媛媛.点蚀随机分布的圆柱壳数值模型的参数化构建方法:ZL201510238911.2[P]. 2018.(WANG Renhua,SUN Jie,FANG Yuanyuan. Parametric construction of cylindrical moel of pitting random distribution:ZL201510238911.2[P]. 2018.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700