用户名: 密码: 验证码:
拉应力作用下X80管线钢预制长槽缺陷周围局部腐蚀行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Local Corrosion Behavior around Artificial Groove Defect of X80 Pipeline Steel under the Tensile Stress
  • 作者:李海坤 ; 孙倩 ; 张效铭 ; 吴世杰 ; 黄琳 ; 谢涛
  • 英文作者:LI Hai-kun;SUN Qian;ZHANG Xiao-ming;WU Shi-jie;HUANG Lin;XIE Tao;China Petroleum Natural Gas Pipeline Research Institute Co., Ltd;China University of Petroleum(Beijing);International Division of China Petroleum Pipeline Bureau;Shashi Steel Pipe Works, Sinopec Oilfield Equipment Corporation;
  • 关键词:长槽缺陷 ; 应力集中 ; 局部腐蚀 ; 微区电化学 ; 腐蚀速率
  • 英文关键词:groove defect;;stress concentration;;local corrosion;;localized electrochemistry;;corrosion rate
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国石油天然气管道科学研究院有限公司;中国石油大学(北京);中国石油管道局工程有限公司国际事业部;中石化石油机械股份有限公司沙市钢管分公司;
  • 出版日期:2019-02-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:BMJS201902033
  • 页数:6
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:236-241
摘要
目的评价在应力作用下,土壤中管道长槽缺陷周围的腐蚀速率。方法采用有限元方法分析了100%屈服应力下,X80管线钢垂直于应力方向的长槽形人造缺陷周围的应力分布。采用扫描电化学显微镜技术(SECM)测试了100%屈服应力下,库尔勒土壤模拟溶液中预浸40天的X80管线钢试件人造缺陷附近的腐蚀电化学活性,通过电流场模型和法拉第定律计算并估计了人造缺陷端部应力集中区和缺陷两侧在库尔勒土壤中的腐蚀速率。结果外加应力下,长槽形预制缺陷端部产生应力集中,缺陷两端局部应力达到试件所施加应力的2~3.4倍。在土壤模拟溶液中,缺陷端部应力集中区为阳极区,缺陷两侧低应力区为阴极区。预制缺陷端部应力集中区域作为阳极,有腐蚀加速的趋势,存在点蚀倾向。结论在拉应力作用下,库尔勒土壤模拟溶液中X80钢缺陷端部平均腐蚀速率可达0.12 mm/a,点蚀速率可达0.9~1.7 mm/a,分别为自然腐蚀速率的1.25倍和9.4~17.7倍,即在应力集中位置更易发生点蚀。
        The work aims to evaluate the corrosion rate around the artificial groove defect of pipeline in soil under the ten-sile stress. The stress distribution around the long groove artificial defect of the X80 pipeline perpendicular to stress directionunder 100% yield stress was analyzed by finite element. The electrochemical activity around the artificial defect of X80 pipelinesteel samples after immersed in the pre-prepared Korla soil simulated solution for 40 days was measured with the ScanningElectrochemical Microscopy(SECM). The corrosion rate of the stress concentration area at the artificial defect ends and bothsides of defects was calculated and estimated by the model of current field and the Faraday's law. The ends of long grooved pre-fabricated defects had stress concentration under external stress and local stress on both ends of defects reached 2~3.4 times ofexternal stress on samples. In the soil simulation solution, the stress concentration area at ends of defects was anodic area, whilethe low stress area at both sides of defects was cathodic area. The stress concentration area at the end of prefabricated defects asanodic area could accelerate the corrosion and tended to appear pitting. Under tensile stress, the average corrosion and pittingrates of defect ends of X80 steel in Korla soil simulation solution are 0.12 mm/a and 0.9~1.7 mm/a respectively, being 1.25 and9.4~17.7 times of natural corrosion rate. Therefore, the stress concentration area is easy to generate pitting.
引文
[1]LI Xiao-gang,ZHANG Da-wei,LIU Zhi-yong,et al.Share corrosion data[J].Nature,2015,527(7579):441-442.
    [2]LIU Zhi-yong,CUI Zhong-yu,LI Xiao-gang,et al.Mechanistic aspect of stress corrosion cracking of X80 pipeline steel under non-stable cathodic polarization[J].Electrochemistry communications,2014,48:127-129.
    [3]LIU Z Y,LU L,HUANG Y Z,et al.Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water[J].Corrosion,2014,70(7):678-685.
    [4]LIU Zhi-yong,LI Xiao-gang,DU Cui-wei,et al.Effect of inclusions on initiation of stress corrosion cracks in X70pipeline steel in an acidic soil environment[J].Corrosion science,2009,51(4):895-900.
    [5]LIU Z Y,LI Q,CUI Z Y,et al.Field experiment of stress corrosion cracking behavior of high strength pipeline steels in typical soil environments[J].Construction&building materials,2017,148:131-139.
    [6]YAN Mao-cheng,SUN Cheng,XU Jin,et al.Stress corrosion of pipeline steel under occluded coating disbondment in a red soil environment[J].Corrosion science,2015,93(1):27-38.
    [7]孟旭,薛旦,李强,等.X80钢在碱性环境中的应力腐蚀行为[J].腐蚀与防护,2014,35(6):546-549.MENG X,XUE D,LI Q,et al.Stress corrosion cracking of X80 steel in alkaline environment[J].Corrosion&protection,2014,35(6):546-549.
    [8]CUI Zhong-yu,LIU Zhi-yong,WANG Li-wei,et al.Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in nearneutral pH environment[J].Materials science&engineering A,2016,677:259-273.
    [9]LIU Z Y,WANG X Z,DU C W,et al.Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments[J].Materials science&engineering A,2016,658:348-354.
    [10]LI M C,CHENG Y F.Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy[J].Electrochimica acta,2008,53(6):2831-2836.
    [11]SONG F M.Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH[J].Corrosion science,2009,51(11):2657-2674.
    [12]LIU Z Y,LI X G,CHENG Y F.Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization[J].Electrochimica acta,2012,60(1):259-263.
    [13]LIU Z Y,LI X G,CHENG Y F.In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution[J].Electrochemistry communications,2010,12(7):936-938.
    [14]LIU Zhi-yong,LI Xiao-gang,DU Cui-wei,et al.Local additional potential model for effect of strain rate on SCCof pipeline steel in an acidic soil solution[J].Corrosion science,2009,51(12):2863-2871.
    [15]LIU Zhi-yong,LI Xiao-gang,DU Cui-wei,et al.Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment[J].Corrosion science,2008,50(8):2251-2257.
    [16]LIU Z Y,LI X G,CHENG Y F.Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization[J].Corrosion science,2012,55(2):54-60.
    [17]LIU Z Y,LI X G,CHENG Y F.Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pHsolution[J].Electrochimica acta,2011,56(11):4167-4175.
    [18]CHENG Y F,NIU L.Mechanism for hydrogen evolution reaction on pipeline steel in near-neutral pH solution[J].Electrochemistry communications,2007,9(4):558-562.
    [19]HE D X,LUO J L,CHEN W X.Effect of cathodic potential on hydrogen content in a pipeline steel exposed to NS4 near-neutral p H soil solution[J].Corrosion,2004,60(8):778-786.
    [20]ASME B31G-1991.Manual for determining the remaining strength of corroded pipelines[S].
    [21]刘智勇,翟国丽,杜翠薇,等.X70钢在鹰潭酸性土壤中的应力腐蚀行为[J].四川大学学报(工程科学版),2008(2):76-81.LIU Zhi-yong,ZHAI Guo-li,DU Cui-wei,et al.SCC of X70 steel in Yingtan acid soil environment[J].Journal of Sichuan University(engineering science edition),2008(2):76-81.
    [22]梁平,李晓刚,杜翠薇,等.影响埋地X70管线钢腐蚀性的土壤因素评价[J].腐蚀与防护,2009,30(8):526-530.LIANG Ping,LI Xiao-gang,DU Cui-wei,et al.Evaluation of soil factors influencing corrosion of buried X70pipeline steel[J].Corrosion protection,2009,30(8):526-530.
    [23]OLTRA R,VIGNAL V.Recent advances in local probe techniques in corrosion research-Analysis of the role of stress on pitting sensitivity[J].Corrosion science,2007,49(1):158-165.
    [24]俞春福,徐久军,黑祖昆.电化学扫描探针显微镜在腐蚀电化学研究中的应用[J].腐蚀与防护,2002(1):1-5.YU Chun-fu,XU Jiu-jun,HEI Zu-kun.Application of electrochemical scanning probe microscopy in corrosion-electrochemistry research[J].Corrosion protection,2002(1):1-5.
    [25]朱应扬,朱日彰,王旷,等.不锈钢裸表面在氯化物溶液中钝化的动力学规律和机理研究[J].中国腐蚀与防护学报,1987(1):27-34.ZHU Ying-yang,ZHU Ri-zhang,WANG Kuang,et al.Kinetics of passivation of stainless steel in chloride solution[J].Journal of Chinese society for corrosion and protection,1987(1):27-34.
    [26]DAVOODI A,PAN J,LEYGRAF C,et al.Norgren probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM[J].Applied surface science,2006,252(15):5499-5503.
    [27]张琳,杨德钧.夹杂物对不锈钢孔蚀敏感性的影响[J].中国腐蚀与防护学报,1987(4):297-302.ZHANG Lin,YANG De-jun.A study of the effect of inclusions on pitting susceptibility of stainless steel[J].Journal of Chinese society for corrosion and protection,1987(4):297-302.
    [28]王玉杰.残余应力影响碳钢腐蚀敏感性的局部电化学研究[D].济南:山东大学,2014:45-58.WANG Yu-jie.Local electrochemical study of the effect of residual stress on the corrosion sensitivity of carbon steel[D].Jinan:Shandong University,2014:45-58.
    [29]刘智勇,李晓刚,杜翠薇,等.管道钢在土壤环境中应力腐蚀模拟溶液进展[J].油气储运,2008,27(4):34-39.LIU Zhi-yong,LI Xiao-gang,DU Cui-wei,et al.Development of stress corrosion simulation solution of pipeline steel in soil environment[J].Oil&gas storage and transportation,2008,27(4):34-39.
    [30]刘忠乐,龚沈光.海水中稳恒电流电场的点电极计算模型[J].海军工程大学学报,2004,61(1):35-39.LIU Zhong-le,GONG Shen-guang.Point-electrode calculation model of electric field of steady current in sea[J].Journal of Naval University of Engineering,2004,61(1):35-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700