用户名: 密码: 验证码:
氧化还原法制备超疏水表面及其防覆冰性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of superhydrophobic surface by redox process and its anti-icing performance
  • 作者:占彦龙 ; 李文 ; 李宏 ; 胡良云
  • 英文作者:ZHAN Yan-long;LI Wen;LI Hong;HU Liang-yun;School of Physics and Electronic Science,Hubei Normal University;Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation,Hubei Polytechnic University;
  • 关键词:氧化还原法 ; 超疏水 ; 静态防覆冰 ; 动态防覆冰
  • 英文关键词:redox process;;superhydrophobic;;static anti-icing;;dynamic anti-icing
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:湖北师范大学物理与电子科学学院;湖北理工学院湖北省矿区环境污染控制与修复重点实验室;
  • 出版日期:2019-01-11 11:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.428
  • 基金:青年科学基金项目(21603070)
  • 语种:中文;
  • 页:CLGC201901009
  • 页数:6
  • CN:01
  • ISSN:11-1800/TB
  • 分类号:62-67
摘要
使用化学氧化还原法制备出疏水性能优异的超疏水表面,使用接触角测量仪、扫描电镜对表面浸润性及形貌进行表征分析。制得的铝基体超疏水表面接触角高达163.31°,滚动角小于5°。探究不同反应时间对表面形貌和浸润性的影响,使用自制的结冰监测系统对制备出的超疏水表面的静态和动态水滴防覆冰性能进行探究,并结合一维传热理论和经典成核理论对实验结果进行分析。结果表明,反应80min时表面疏水效果最好,超疏水表面静态水滴延缓结冰时间约是普通样品的5倍,结冰温度也低了3.3℃,动态水滴撞击表面时,超疏水表面始终无积水和覆冰,表现出优异的静态和动态防覆冰性能。
        Superhydrophobic surfaces with excellent hydrophobic properties were prepared by chemical redox process. The surface wettability and morphology were characterized and analyzed by contact angle measurement and scanning electron microscopy(SEM). The contact angle of the superhydrophobic surface is as high as 163.31°, and the sliding angle is less than 5°. The effect of different reaction time on surface morphology and wettability was investigated, the performance of the static water droplets and the dynamic anti-icing performance of the superhydrophobic surface was explored by using a self-made icing testing system, and the experimental results were analyzed by combining the one dimensional heat transfer theory and classical nucleation theory. The results show that the surface hydrophobicity is the best when the reaction is 80 min. The delay icing time of static water droplets on superhydrophobic surface is about 5 times than the normal sample, icing temperature is also low 3.3℃. There is no accumulated water and ice from start to end on superhydrophobic surface when water droplets impacting the cold surface. The as-prepared superhydrophobic surfaces show excellent static and dynamic anti-icing performance.
引文
[1] LI X, YANG B, ZHANG Y, et al. A study on superhydrophobic coating in anti-icing of glass/porcelain insulator [J]. Journal of Sol-gel Science and Technology, 2014, 69(2): 441-447.
    [2] DOU R, CHEN J, ZHANG Y, et al. Anti-icing coating with an aqueous lubricating layer [J]. ACS Applied Materials & Interfaces, 2014, 6(10): 6998-7003.
    [3] 张友法, 余新泉, 周荃卉, 等. 超疏水低粘着铜表面制备及其防覆冰性能 [J]. 物理化学学报, 2010, 26(5): 1457-1462. ZHANG Y F, YU X Q, ZHOU Q H, et al. Fabrication and anti-cing performance of a superhydrophobic copper surface with low adhesion [J]. Acta Physico-Chimica Sinica, 2010, 26(5): 1457-1462.
    [4] RUAN M, LI W, WANG B, et al. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates [J]. Langmuir, 2013, 29(27): 8482-8491.
    [5] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997, 202(1): 1-8.
    [6] BOINOVICH L B, EMELYANENKO A M. Anti-icing potential of superhydrophobic coatings [J]. Mendeleev Communications, 2013, 23(1): 3-10.
    [7] LIAO R, ZUO Z, GUO C, et al. Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property [J]. Applied Surface Science, 2014, 317: 701-709.
    [8] YOKOI N, MANABE K, TENJIMBAYASHI M, et al. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure [J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4809-4816.
    [9] LU Y, SATHASIVAM S, SONG J, et al. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil [J]. Science, 2015, 347(6226): 1132-1135.
    [10] LI J, WU R, JING Z, et al. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance [J]. Langmuir, 2015, 31(39): 10702-10707.
    [11] WANG Y, XUE J, WANG Q, et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface [J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3370-3381.
    [12] 张友法, 吴洁, 余新泉, 等. 可控阵列微纳结构超疏水铜表面冰霜传质特性 [J]. 物理化学学报, 2014, 30(10): 1970-1978. ZHANG Y F, WU J, YU X Q, et al. Frost and ice transport on superhydrophobic copper surfaces with patterned micro-and nano-structures[J]. Acta Physico-Chimica Sinica, 2014, 30(10): 1970-1978.
    [13] PURETSKIY N, CHANDA J, STOYCHEV G, et al. Anti-icing superhydrophobic surfaces based on core-shell fossil particles [J]. Advanced Materials Interfaces, 2015, 2(11): 1500124.
    [14] 晏忠钠, 车彦慧, 冯利邦, 等. 超疏水铝合金表面的防覆冰和防黏附行为 [J]. 材料工程, 2015, 43(9): 25-29. YAN Z N, CHE Y H, FENG L B, et al. Anti-icing and anti-adhesion behavior of superhydrophobic aluminum alloy surface [J]. Journal of Materials Engineering, 2015, 43(9): 25-29.
    [15] WANG L, GONG Q, ZHAN S, et al. Robust anti-icing performance of a flexible superhydrophobic surface [J]. Advanced Materials, 2016, 28(35): 7729-7735.
    [16] GUO P, ZHENG Y, WEN M, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces [J]. Advanced Materials, 2012, 24(19): 2642-2648.
    [17] MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets [J]. ACS Nano, 2010, 4(12): 7699.
    [18] ZUO Z, LIAO R, GUO C, et al. Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface[J].Applied Surface Science, 2015, 331:132-139.
    [19] CAO L, JONES A K, SIKKA V K, et al. Anti-icing superhydrophobic coatings [J]. Langmuir, 2009, 25(21): 12444-12448.
    [20] LV J, SONG Y, JIANG L, et al. Bio-inspired strategies for anti-icing [J]. ACS Nano, 2014, 8(4): 3152-3169.
    [21] TOURKINE P, LE MERRER M, QUERE D. Delayed freezing on water repellent materials [J]. Langmuir, 2009, 25(13): 7214-7216.
    [22] CASSIE A B D. Contact angles [J]. Discussions of the Faraday Society, 1948, 3:11-16.
    [23] VARANASI K K, HSU M, BHATE N, et al. Spatial control in the heterogeneous nucleation of water [J]. Applied Physics Letters, 2009, 95(9): 094101.
    [24] VARANASI K K, DENG T, SMITH J D, et al. Frost formation and ice adhesion on superhydrophobic surfaces [J]. Applied Physics Letters, 2010, 97(23): 234102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700