用户名: 密码: 验证码:
江西九连山不同海拔梯度土壤有机碳的变异规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China
  • 作者:张参参 ; 吴小刚 ; 刘斌 ; 施雪文 ; 陈伏生 ; 裘利洪 ; 卜文圣
  • 英文作者:Zhang Cancan;Wu Xiaogang;Liu Bin;Shi Xuewen;Chen Fusheng;Qiu Lihong;Bu Wensheng;2011 Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization;Jiulianshan National Observation and Research Station of Chinese Forest Ecosystem,College of Forestry,Jiangxi Agricultural University;Jiangxi Provincial Management Bureau for Jiulianshan National Nature Reserve;
  • 关键词:有机碳含量 ; 碳储量 ; 土壤类型 ; 植被类型 ; 土壤层次
  • 英文关键词:organic carbon content;;carbon storage;;soil type;;stand type;;soil layer
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:江西农业大学林学院江西特色林木资源培育与利用2011协同创新中心;江西九连山森林生态系统国家定位观测研究站;江西九连山国家级自然保护区管理局;
  • 出版日期:2019-02-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目(31760134、31730014);; 江西省自然科学基金项目(20171BAB214032);; 江西九连山森林生态系统国家定位观测研究站运行补助项目
  • 语种:中文;
  • 页:BJLY201902003
  • 页数:10
  • CN:02
  • ISSN:11-1932/S
  • 分类号:23-32
摘要
【目的】土壤类型、土壤层次及植被类型是土壤有机碳分布格局的重要影响因素,而海拔是对大尺度水热环境条件的再分配,涵盖了土壤类型和植被类型在小尺度上的剧烈变化信息,因而研究不同海拔梯度上土壤有机碳的变异规律对森林生态系统碳汇管理具有重要的意义。【方法】本研究选择九连山境内不同海拔高度(179~1 430m)的森林土壤为研究对象,通过分析植被类型、土壤类型、和不同层次的有机碳含量与碳储量等,揭示不同海拔高度有机碳的垂直分布规律及影响因素。【结果】土壤的前3层(0~40 cm)有机碳含量随着海拔的升高而呈现线性增大的趋势,而第4层(40~60 cm)和第5层(60~100 cm)则随着海拔的升高而逐渐的降低,土壤碳储量与海拔梯度的趋势与土壤有机碳与海拔梯度的趋势基本一致,但总碳储量与海拔梯度的趋势则呈先降低后升高的U形趋势;草甸土的前3层土壤有机碳含量和储量往往高于红壤和黄壤,并且随海拔升高,土壤类型从红壤、黄壤至草甸土的变化过程中,前2层(0~20 cm)有机碳含量和碳储量均存在逐渐上升,而其他层次则无显著差异;高海拔的杜鹃林和高山草甸表层土壤有机碳含量和碳储量往往高于较低海拔的其他植被类型,而高山草甸和次生阔叶林的0~100 cm总碳储量较高。【结论】土壤表层和植被类型的变化可能是导致九连山不同海拔梯度土壤有机碳变异规律的主要原因。在全球气候变暖的情形下,高海拔地区的表层土壤可能随着温度的上升而增加碳排放。
        [Objective]Soil type,soil layer and stand type are considered as major factors affecting the distribution of soil organic carbon. Meanwhile,an altitudinal gradient is a redistribution of hydrothermal conditions at large-scale environments,and often involve the variations of soil and vegetation types at small scale. Therefore,there is an important significance for carbon sequestration management in forestecosystem to explore the variations of soil organic carbon along an altitudinal gradient( 179-1 430 m).[Method]Twenty soil profiles distributed with five soil layers along an altitudinal gradient in Jiulian Moutain were sampled. Moreover,vegetation type,soil type,soil organic carbon content and soil carbon storage were recorded for these soil samples to explore the vertical distribution and influencing factor of soil organic carbon along an altitudinal gradient. [Result] The organic carbon content of top three soil layers( 0-40 cm) increased linearly with the increase of elevation,whereas that of the bottom two layers( 40-60 cm and 60-100 cm) decreased linearly with the increase of elevation. The pattern of soil carbon storage with elevations was similar with that of soil organic carbon content. However,there was a"U"shape between total soil carbon storage and elevation; Soil organic carbon content and carbon storage of top three soil layers in meadow soil were generally higher than those in red soil or yellow soil,the organic carbon content and carbon storage of top soil layer( 0-20 cm) increased with the altitudinal gradient from red soil,yellow soil to meadow soil,meanwhile there was no significant difference among other layers. Soil organic carbon content and carbon storage of top three soil layers for Rhododendron woods and alpine meadow in high elevation were generally higher than those for the other vegetation types in low elevation,and there was the highest total carbon storage with 0-100 cm in alpine meadow and secondary broadleaved forest. [Conclusion] These results indicate that variations of top soil layer and vegetation types are the major factors to drive the variations of soil organic carbon along an altitudinal gradient in Jiulian Mountain of eastern China. The carbon emission of top soil layers in high elevation may increase with the increase of air temperature under the global warming.
引文
[1] Sakschewski B,Von Bloh W,Boit A,et al. Resilience of Amazon forests emerges from plant trait diversity[J]. Nature Climate Change,2016,6(11):1032-1036.
    [2] Jackson R B,Lajtha K,Crow S E,et al. The ecology of soil carbon:pools, vulnerabilities, and biotic and abiotic controls[J]. Annual Review of Ecology,Evolution,and Systematics,2017,48:419--445.
    [3] Lal R. Soil carbon sequestration to mitigate climate change[J].Geoderma,2004,123:1--22.
    [4] Purton K,Dan P,Leinweber P,et al. Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence[J]. Geoderma,2015,253--254:48--60.
    [5] Melillo J M,Frey S D,Deangelis K M,et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science,2017,358:101-105.
    [6] Jmo S,Hall D O. The global carbon sink:a grassland perspective[J]. Global Change Biology,2010,4(2):229--233.
    [7]张仲胜,李敏,宋晓林,等.气候变化对土壤有机碳库分子结构特征与稳定性影响研究进展[J].土壤学报,2018,55(2):273-282.Zhang Z S,Li M,Song X L,et al. Effects of climate change on molecular structure and stability of soil carbon pool:a general review[J]. Acta Pedologica Sinica,2018,55(2):273--282.
    [8]胡慧蓉,马焕成,罗承德,等.森林土壤有机碳分组及其测定方法[J].土壤通报,2010,41(4):1018--1024.Hu H R,Ma H C,Luo C D,et al. Forest soil organic carbon fraction and its measure methods[J]. Chinese Journal of Soil Science,2010,41(4):1018--1024.
    [9]魏孝荣,邵明安,高建伦.黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J].环境科学,2008,29(10):2879-2884.Wei X R,Shao M A,Gao J L. Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau[J]. Environmental Science,2008,29(10):2879-2884.
    [10]王岩松,李梦迪,朱连奇.土壤有机碳库及其影响因素的研究进展[J].中国农学通报,2015,31(32):123-131.Wang Y S,Li M D,Zhu L Q. Research process of soil organic carbon storage and its influencing factors[J]. Chinese Agricultural Science Bulletin,2015,31(32):123-131.
    [11]王晶,何忠俊,王立东,等.高黎贡山土壤腐殖质特性与团聚体数量特征研究[J].土壤学报,2010,47(4):723-733.Wang J,He Z J,Wang L D,et al. Properties of humus and content of soil aggregates in soil on Gaoligong Mountain[J]. Acta Pedologica Sinica,2010,47(4):723-733.
    [12] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,2014,47:151-163.
    [13] Jobbagy E G,Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications,2000,10(2):423--436.
    [14]毕珍,石辉,许五弟,等.四川盆地森林土壤的有机碳储量及其空间分布特征[J].水土保持研究,2009,16(5):83-87.Bi Z,Shi H,Xu W D,et al. Forest soil organic carbon storage and characteristics of spatial distribution in Sichuan Basin[J].Research of Soil and Water Conservation,2009,16(5):83-87.
    [15]刘亚兰,郭汝清,孙书存.中国亚热带山地植被垂直带分布对气候季节性的响应[J].生态学报,2010,30(14):3912-3922.Liu Y L,Guo R Q,Sun S C. Variations in the vertical vegetation zonation of subtropical Chinese mountains:the importance of climatic seasonality[J]. Acta Ecologica Sinica,2010,30(14):3912--3922.
    [16]周广胜,张新时.全球变化的中国气候--植被分类研究[J].植物学报,1996,38(1):8--17.Zhou G S,Zhang X S. Study on climate-vegetation classification for global change in China[J]. Acta Botanica Sinica,1996,38(1):8-17.
    [17]吴雅琼,刘国华,傅伯杰,等.森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子[J].生态学报,2007,27(11):4678-4685.Wu Y Q,Liu G H,Fu B J,et al. Soil CO2emission distribution along an elevation gradient and the controlling factors in the forest ecosystem[J]. Acta Ecologica Sinica,2007,27(11):4678-4685.
    [18]吴建国,艾丽,田自强,等.祁连山中部土壤颗粒组分有机质碳含量及其与海拔和植被的关系[J].生态环境学报,2008,17(6):2358-2365.Wu J G,Ai L,Tian Z Q,et al. The soil particulate organic carbon in different elevation and its relationship with vegetation in Qilian Mountain[J]. Ecology and Environment,2008,17(6):2358--2365.
    [19]刘迎春,于贵瑞,王秋凤,等.基于成熟林生物量整合分析中国森林碳容量和固碳潜力[J].中国科学:生命科学,2015,45(2):210-222Liu Y C,Yu G R,Wang Q F,et al. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass[J]. Scientia Sinica Vitae,2015,45(2):1218--1229.
    [20]邸月宝,王辉民,马泽清,等.亚热带森林生态系统不同重建方式下碳储量及其分配格局[J].科学通报,2012,57(17):1553--1561.Di Y B,Wang H M,Ma Z Q,et al. Carbon storage and its allocation pattern of forest ecosystems with different restoration methods in subtropical China[J]. Chinese Science Bulletin,2012,57(17):1553--1561.
    [21]杜有新,吴从建,周赛霞,等.庐山不同海拔森林土壤有机碳密度及分布特征[J].应用生态学报,2011,22(7):1675-1681.Du Y X,Wu C J,Zhou S X,et al. Forest soil organic carbon density and its distribution characteristics along an altitudinal gradient in Lushan Moutain of China[J]. Chinese Journal of Applied Ecology,2011,22(7):1675--1681.
    [22]柯娴氡,张璐,苏志尧.粤北亚热带山地森林土壤有机碳沿海拔梯度的变化[J].生态与农村环境学报,2012,28(2):151-156.Ke X D,Zhang L,Su Z Y. Variation of soil organic carbon content along altitudinal gradient in subtropical montane forest in North Guangdong[J]. Journal of Ecology and Rural Environment,2012,28(2):151-156.
    [23]程浩,张厚喜,黄智军,等.武夷山不同海拔高度土壤有机碳含量变化特征[J].森林与环境学报,2018,38(2):1--8.Cheng H,Zhang H X,Huang Z J,et al. Variations of soil organic carbon content along an altitudinal gradient in Wuyi Mountain[J]. Journal of Forest and Environment,2018,38(2):1--8.
    [24] Townsend A R,Vitousek P M,Trumbore S E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii[J]. Ecology,1995,76(3):721--733.
    [25]韩广轩,周广胜.土壤呼吸作用时空动态变化及其影响机制研究与展望[J].植物生态学报,2009,33(1):197--205.Han G X,Zhou G S. Review of spatial and temporal variations of soil respiration and driving mechanism[J]. Chinese Journal of Plant Ecology,2009,33(1):197--205.
    [26] Asner N G P. Dissolved organic carbon in terrestrial ecosystems:synthesis and a model[J]. Ecosystems,2001,4(1):29--48.
    [27]丁虎,郎赟超,刘丛强.土壤碳淋溶流失研究进展[J].地球与环境,2016,44(1):139--146.Ding H,Lang Y C,Liu C Q. Advances in study on leaching loss of carbon from soil[J]. Earth and Environment,2016,44(1):139-146.
    [28]杨元根,刘丛强,袁可能,等.南方红土形成过程及其稀土元素地球化学[J].第四纪研究,2000,20(5):469--480.Yang Y G,Liu C Q,Yuan K N,et al. Laterite formation process in southern China and its rare earth element(REE)geochemistry[J]. Quaternary Sciences,2000,20(5):469-480.
    [29]徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报,2005,27(2):18-22.Xu Q F,Jiang P K,Shen Q. Comparison of organic carbon pool of soil in bush and broad-leaved forests[J]. Journal of Beijing Forestry University,2005,27(2):18--22.
    [30]张鹏,张涛,陈年来.祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J].应用生态学报,2009,20(3):518-524.Zhang P,Zhang T,Chen N L. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains[J]. Chinese Journal of Applied Ecology,2009,20(3):518-524.
    [31]向慧敏,温达志,张玲玲,等.鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化[J].生态学报,2015,35(18):6089-6099.Xiang H M,Wen D Z,Zhang L L,et al. Altitudinal changes in active and recalcitrant soil carbon pools of forests in the Dinghu Mountains[J]. Acta Ecologica Sinica,2015,35(18):6089-6099.
    [32]郭鑫,吴鹏,韩威,等.演替和气候对阔叶红松林土壤有机碳密度的影响[J].北京林业大学学报,2016,38(7):55-63.Guo X,Wu P,Han W,et al. The influence of succession stages and climate on soil organic carbon density of broad-leaved Korean pine forest[J]. Journal of Beijing Forestry University,2016,38(7):55-63.
    [33]吕超群,孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报,2004,28(5):692-703.LüC Q,Sun S C. A review on the distribution patterns of carbon density in terrestrial ecosystem[J]. Chinese Journal of Plant Ecology,2004,28(5):692-703.
    [34]王清奎,汪思龙,冯宗炜.杉木纯林与常绿阔叶林土壤活性有机碳库的比较[J].北京林业大学学报,2006,28(5):1-6.Wang Q K,Wang S L,Feng Z W. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University,2006,28(5):1--6.
    [35]聂阳意,王海华,金昌善,等.武夷山低海拔和高海拔森林土壤有机碳的矿化特征[J].应用生态学报,2018,29(3):748-756.Nie Y Y,Wang H H,Jin C S,et al. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China[J]. Chinese Journal of Applied Ecology,2018,29(3):748-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700