用户名: 密码: 验证码:
致密储层纳米流度改性剂的微流控模拟评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microfluidics Simulation Investigation of Nano Fluidity Modifier for Tight Reservoir
  • 作者:耿向飞 ; 丁彬 ; 张玉亮 ; 王哲 ; 郭建辰 ; 肖川
  • 英文作者:GENG Xiangfei;DING Bin;ZHANG Yuliang;WANG Zhe;GUO Jianchen;XIAO Chuan;Research Institute of Petroleum Exploration and Development,PetroChina;Research Institute of Petroleum Exploration and Development,Xinjiang Oilfield Branch Company;Xinjiang Oilfield General Supply Corporation;
  • 关键词:致密储层 ; 流度改性剂 ; 微流控 ; 驱油效率
  • 英文关键词:tight reservoir;;fluidity modifier;;microfluidic;;displacement efficiency
  • 中文刊名:YJHX
  • 英文刊名:Oilfield Chemistry
  • 机构:中国石油勘探开发研究院;新疆油田分公司勘探开发研究院;新疆油田分公司物资供应总公司;
  • 出版日期:2019-06-25
  • 出版单位:油田化学
  • 年:2019
  • 期:v.36;No.140
  • 语种:中文;
  • 页:YJHX201902015
  • 页数:5
  • CN:02
  • ISSN:51-1292/TE
  • 分类号:81-84+90
摘要
为克服常用注入液体性能评价方法的不足,同时实现对致密储层注入液体驱油过程的有效评价,通过自主设计的3种微流控模型(2维多孔介质模型、2.5维孔喉模型和半圆多通道模型)对研发的致密储层纳米流度改性剂开展了驱油性能的在线、可视模拟评价研究。结果表明,纳米流度改性剂可显著降低注水启动压力,比水更易进入小孔隙,并可快速将原油分割为小油滴,大幅提高原油的流度与运移能力,驱油效率高达90%以上,可用于致密储层的高效开发。图22参12
        In order to overcome the shortcomings of common methods for evaluating the performance of injected fluids and realize the effective evaluation of the process of injected fluids flooding in tight reservoirs,three self made microfluidic models,including two dimensions porous media model,two and half dimensions throat model and semi-circle multichannel model,were used to online characterize the oil displacement property of nano fluidity modifier for tight reservoir. The results showed that the nano fluidity modifier could greatly decrease the water flooding start-up pressure and enter the smaller pore easier. The nano fluidity modifier divided the crude oil into smaller oil drop,thus significantly increased the fluidity and migration ability of crude oil with above 90% oil displacement efficiency,which could be expected to help the development of tight oil.
引文
[1]邹才能,杨智,朱如凯,等.中国非常规油气勘探开发与理论技术进展[J].地质学报,2015,89(6):979-1007.
    [2]邹才能,丁云宏,卢拥军,等.“人工油气藏”理论、技术与实践[J].石油勘探与开发,2017,44(1):144-154.
    [3]林炳承,秦建华.微流控芯片实验室[M].北京:科学出版社,2006:54-90.
    [4]林炳承,秦建华.图解微流控芯片实验室[M].北京:科学出版社,2012:40-60.
    [5]李战华,吴健康,胡国庆,等.微流控芯片中的流体流动[M].北京:科学出版社,2008:55-61.
    [6] PARISA B,IAN D G,AMIR S N,et al. Silica-based nanofluid heavy oil recovery a microfluidic approach[C].//SPE Canada Heavy Oil Technical Conference. Calgary,2017,SPE-185008-MS.
    [7] SHAHNAWAZ M,FARSHID M. Microfluidic platform for PVT measurements[C].//SPE Annual Technical Conference and Exhibition. Amsterdam,2014,SPE-170910-MS.
    [8] MARIO C,STEPHEN W P,TRUNER M,et al. Entropic recoil separation of long DNA molecules[J]. Anal Chem,2002,74(20):6170-6176.
    [9] MOIRéM,PEYSSON Y,PANNACCI N,et al. A new micro fluidic tensiometer for optimizing EOR formulations[C].//SPE Improved Oil Recovery Conference. Oklahoma, 2016, SPE179557-MS.
    [10] HE Kai,XU Liang,YIN Xiaolong,et al. A rock-on-a-chip approach to study fluid invasion and flowback in liquidsrich shale formations[C].//SPE Oklahoma Oil and Gas Symposium.Oklahoma,2017,SPE-185088-MS.
    [11]丁彬,罗健辉,耿向飞,等.基于低场核磁共振技术的岩心内流体“可视化”评价方法研究[J].油田化学,2018,35(1):170-175.
    [12]耿向飞,罗健辉,丁彬,等.低渗透油藏毛细作用评价方法研究[J].油田化学,2017,34(4):717-720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700