用户名: 密码: 验证码:
西藏仁布县新夏岩金矿床成矿时代探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discussion on the Ore Forming Age of Xinxia Primary Gold Deposit, Tibet, China
  • 作者:李应栩 ; 宋旭波 ; 梁金龙 ; 谢世强
  • 英文作者:LI Ying-xu;SONG Xu-bo;LIANG Jin-long;XIE Shi-qiang;Chengdu Center,China Geological Survey;Chengdu University of Technology;
  • 关键词:仁布 ; 新夏金矿 ; LA-ICP-MS ; 锆石 ; 不一致U-Pb年龄
  • 英文关键词:Renbu;;Xinxia primary gold deposit;;LA-ICP-MS;;zircon;;discordant U-Pb data
  • 中文刊名:HBDX
  • 英文刊名:Journal of Hebei GEO University
  • 机构:中国地质调查局成都地质调查中心;成都理工大学地球科学学院;
  • 出版日期:2018-10-20
  • 出版单位:河北地质大学学报
  • 年:2018
  • 期:v.41
  • 基金:中国地质调查局地质调查项目(DD20160015);; 国家重点基础研究发展计划项目(2016YFC0600308);; 国家自然科学基金资助项目(41702086)
  • 语种:中文;
  • 页:HBDX201805001
  • 页数:17
  • CN:05
  • ISSN:13-1422/Z
  • 分类号:7-23
摘要
西藏仁布县新夏岩金矿的矿体赋存于切割辉石闪长岩的近南北向断裂中,矿区中还发育有呈小角度斜切赋矿断裂的辉绿岩脉。通过对矿区内辉石闪长岩和辉绿岩脉中锆石进行LA-ICP-MS分析,获得两种岩浆岩中锆石的不一致U-Pb线的上交点和下交点年龄分别为543±23 Ma和14.2±2.4 Ma(n=14,MSWD=0.19)以及579±21 Ma和5.3±1.9 Ma(n=13, MSWD=0.074)。锆石的阴极发光显示的内部结构以及微区原位微量和稀土元素等地球化学特征显示,构成不一致U-Pb年龄的锆石测点记录了由岩浆捕获的围岩锆石的变质作用,下交点年龄应是代表岩浆侵位引发的热事件。这些年轻的年龄数据显示,新夏岩金矿的矿体应是形成于印度-亚洲陆陆碰撞的后碰撞伸展阶段,明显不同于马攸木和邦布岩金矿,代表了青藏高原南部在陆陆碰撞背景下一次尚待进一步揭示的金成矿事件。
        The orebodies of Xinxia primary gold deposit are located in the north-south fault system in the pyroxene diorite, and some of these faults are cutted by diabase vein. LA-ICP-MS are taken on zircons from these two kinds of magmatite in this paper, and the analysis spots yield discordant U-Pb ages. The upper and lowwer intercepted ages are 543±23 Ma and 14.2±2.4 Ma(n=14, MSWD=0.19) for pyroxene diorite, and 579±21 Ma and 5.3±1.9 Ma(n=13, MSWD=0.074) for diabase vein respectively. The internal structure of these zircons revealed by cathodoluminescence and geochemical characteristics of trace and rare earth elements in these zircons show they are inherited zircons captured and metamorphosed by igneous rock that host them. These discordant U-Pb ages are the records of metamorphism induced by magmatism, and the lowwer intercepted ages represent the emplacement of the pyroxene diorite and diabase vein respectively. These ages may imply the ore-forming age of Xinxia primary gold deposit, Tibet, China, is much younger than Mayoumu in the west and Bangbu in the east of IYS, and the orebodies are formed in post-collisional extension setting of India-Asia continental collision. This gold metallogenic event still needs further discovery along IYS in southern Tibetan Plateau.
引文
[1]祝向平,陈华安,马东方,等.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报,2011,27(7):2159-2164.
    [2]祝向平,陈华安,马东方,等.西藏多不杂斑岩铜金矿床地质与蚀变[J].地质与勘探,2012,48(2):199-206.
    [3]李永灿,黄瀚霄,刘洪,等.班公湖-怒江成矿带金成矿规律及成矿作用初讨[J].沉积与特提斯地质,2017,37(2):1-13.
    [4]曲晓明,范淑芳,马旭东,等.西藏班公湖-怒江成矿带上的碰撞后铜矿床[J].矿床地质,2015,34(3):431-448.
    [5]李光明,段志明,刘波,等.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义[J].地质通报,2011,30(8):1256-1260.
    [6]唐菊兴,张丽,李志军,等.西藏玉龙铜矿床-鼻状构造圈闭控制的特大型矿床[J].矿床地质,2006,25(6):652-662.
    [7]谢玉玲,侯增谦,徐九华,等.藏东玉龙斑岩铜矿床多期流体演化与成矿的流体包裹体证据[J].岩石学报,2005,21(5):1409-1415.
    [8]马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].武汉:中国地质大学出版社,1990.
    [9]马鸿文.论藏东玉东铜矿带花岗斑岩类的成因类别[J].成都理工大学学报(自科版),1990(3):68-75.
    [10]张玉泉,谢应雯,梁华英,等.藏东玉龙铜矿带含矿斑岩及成岩系列[J].地球化学,1998(3):236-243.
    [11]孟祥金,侯增谦,高永丰,等.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J].地质论评,2003,49(6):660-666.
    [12]佘宏全,丰成友,张德全,等.西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,2006,22(3):689-696.
    [13]杨志明,侯增谦,宋玉财,等.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质,2008,27(3):279-318.
    [14]李光明,王高明,高大发,等.西藏冈底斯铜矿资源前景与找矿方向[J].矿床地质,2002(s1):144-147.
    [15]侯增谦,曲晓明,黄卫,等.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,2001,28(10):27-29.
    [16]曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,2001,20(4):355-366.
    [17]侯增谦,郑远川,杨志明,等.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质,2012,31(4):647-670.
    [18]江思宏,聂凤军,刘翼飞.西藏马攸木金矿床的矿床类型讨论[J].矿床地质,2008,27(2):220-229.
    [19]JIANG S,NIE F,HU P,et al.Mayum:an orogenic gold deposit in Tibet,China[J].Ore Geology Reviews,2009,36(1):160-173.
    [20]范小平,多吉,温春齐,等.西藏马攸木金矿床含金脉石英的40Ar/39Ar快中子活化定年及其地质意义[J].沉积与特提斯地质,2005,25(4):33-36.
    [21]温春齐,多吉,孙燕,等.西藏普兰县马攸木金矿床石英的40Ar/39Ar年龄及其地质意义[J].地质通报,2004,23(7):686-688.
    [22]温春齐,多吉,温泉,等.西藏马攸木金矿区黑云母的40Ar/39Ar法定年[J].矿物岩石,2004,24(2):53-56.
    [23]SUN X M,WEI H,ZHAI W,et al.Fluid inclusion geochemistry and Ar-Ar geochronology of the Cenozoic Bangbu orogenic gold deposit,southern Tibet,China[J].Ore Geology Reviews,2016,74:196-210.
    [24]SUN X,WEI H,ZHAI W,et al.Bangbu:the Largest Cenozic Orogenic Gold Deposit in Southern Tibet,China[J].Acta Geologica Sinica,2014,88(s2):788-789.
    [25]李应栩,宋旭波,向安平,等.西藏康雄金矿始新世赋矿岩体成因及意义[J].矿物学报,2017(S1):318-319.
    [26]潘桂棠,王立全,张万平,等.青藏高原及邻区大地构造图及说明书(1:1 500 000)[M].北京:地质出版社,2013:1-208.
    [27]CHENG H,LIU Y,VERVOORT J D,et al.Combined U-Pb,Lu-Hf,Sm-Nd and Ar-Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-Tethys Ocean in the Lhasa terrane,Tibet[J].Gondwana Research,2015,28(4):1482-1499.
    [28]CHU M F,CHUNG S L,SONG B,et al.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J].Geology,2006,34(9):745.
    [29]DONG X,ZHANG Z,LIU F,et al.Zircon U-Pb geochronology of the Nyainqentanglha Group from the Lhasa terrane:New constraints on the Triassic orogeny of the south Tibet[J].Journal of Asian Earth Sciences,2011,42(4):732-739.
    [30]GUO L,LIU Y,LIU S,et al.Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt,Southern Tibet:Implications for early history of the Neo-Tethys[J].Lithos,2013,179(5):320-333.
    [31]JI W Q,WU F Y,CHUNG S L,et al.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet[J].Chemical Geology,2009,262(3-4):229-245.
    [32]KANG Z Q,XU J F,WILDE S A,et al.Geochronology and geochemistry of the Sangri Group Volcanic Rocks,Southern Lhasa Terrane:Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc[J].Lithos,2014,200-201(1):157-168.
    [33]ZHU D C,ZHAO Z D,NIU Y,et al.The origin and pre-Cenozoic evolution of the Tibetan Plateau[J].Gondwana Research,2013,23(4):1429-1454.
    [34]陈炜,马昌前,宋志强,等.西藏冈底斯带中南部与俯冲有关的早侏罗世花岗闪长岩:锆石U-Pb年代学及地球化学证据[J].地质科技情报,2011,30(6):1-12.
    [35]董汉文,许志琴,李源,等.东喜马拉雅构造结墨脱地区晚三叠世深熔作用的锆石U-Pb年代限定[J].大地构造与成矿学,2014,38(2):184-193.
    [36]董昕,张泽明.拉萨地体南部早侏罗世岩浆岩的成因和构造意义[J].岩石学报,2013,29(6):1933-1948.
    [37]和钟铧,杨德明,郑常青,等.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束[J].地质论评,2006,52(1):100-106.
    [38]黄丰,许继峰,陈建林,等.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?[J].岩石学报,2015,31(7):2089-2100.
    [39]李才,王天武,李惠民,等.冈底斯地区发现印支期巨斑花岗闪长岩-古冈底斯造山的存在证据[J].地质通报,2003,22(5):364-366.
    [40]刘敏,赵志丹,管琪,等.西藏聂荣微陆块早侏罗世中期花岗岩及其包体的岩浆混合成因:锆石LA-ICP-MS U-Pb定年和Hf同位素证据[J].岩石学报,2011,27(7):1931-1937.
    [41]刘琦胜,江万,简平,等.宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征[J].岩石学报,2006,22(3):643-652.
    [42]彭建华,赵希良,何俊,等.西藏冈底斯西部地区印支期闪长岩的特征及其地质意义[J].沉积与特提斯地质,2014(1):102-107.
    [43]宋绍玮,刘泽,朱弟成,等.西藏打加错晚三叠世安山质岩浆作用的锆石U-Pb年代学和Hf同位素[J].岩石学报,2014,30(10):3100-3112.
    [44]杨志明,侯增谦,夏代详,等.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示[J].矿床地质,2008,27(1):28-36.
    [45]张宏飞,徐旺春,郭建秋,等.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据[J].地球科学-中国地质大学学报,2007,32(2):155-166.
    [46]朱弟成,潘桂棠,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报,2008,27(4):458-468.
    [47]郑有业,张刚阳,许荣科,等.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J].科学通报,2007,52(21):2542-2548.
    [48]唐菊兴,黎风佶,李志军,等.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据[J].矿床地质,2010,29(3):461-475.
    [49]张刚阳,郑有业,龚福志,等.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,2008,24(3):75-81.
    [50]李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,2004,28(2):165-170.
    [51]芮宗瑶,李光明,张立生,等.西藏斑岩铜矿对重大地质事件的响应[J].地学前缘,2004,11(1):145-152.
    [52]芮宗瑶,侯增谦,曲晓明,等.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,2003,22(3):217-225.
    [53]HOU Z,YANG Z,QU X,et al.The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J].Ore Geology Reviews,2009,36(1-3):25-51.
    [54]闫学义,黄树峰,杜安道.冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用[J].地质学报,2010,84(3):398-406.
    [56]张松,郑远川,黄克贤,等.西藏努日矽卡岩型铜钨钼矿辉钼矿Re-Os定年及其地质意义[J].矿床地质,2012,31(2):337-346.
    [57]王欣欣,郑荣才,闫国强,等.努日铜钼钨矿床黄铜矿Re-Os定年及意义[J].金属矿山,2014,32(10):126-129.
    [58]段连峰,李为,郑远川,等.西藏冈底斯南缘碰撞后渐新世成矿作用--来自帕南钼矿床的Re-Os同位素年龄证据[J].岩石矿物学杂志,2014,33(2):307-316.
    [59]许志琴,李海兵,杨经绥.造山的高原-青藏高原巨型造山拼贴体和造山类型[J].地学前缘,2006,04:1-17.
    [60]许志琴,杨经绥,李海兵,等.印度-亚洲碰撞大地构造[J].地质学报,2011,85(1):1-33.
    [61]吴福元,刘传周,张亮亮,等.雅鲁藏布蛇绿岩-事实与臆想[J].岩石学报,2014,30(2):293-325.
    [62]YIN A,HARRISON T M,MURPHY M A,et al.Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J].Geological Society of America Bulletin,1999,111(11):1644-1664.
    [63]YIN A,HARRISON T M,RYERSON F J,et al.Tertiary structural evolution of the Gangdese Thrust System,southeastern Tibet[J].Journal of Geophysical Research Solid Earth,1994,99(B9):18175-18201.
    [64]DüRR S.Provenance of Xigaze fore-arc basin clastic rocks(Cretaceous,south Tibet)[J].Geological Society of America Bulletin,1996,108(6):669-684.
    [65]李祥辉,王成善,李亚林,等.仲巴微地体之定义及构成[J].地质学报,2014,88(8):1372-1381.
    [66]孙高远,胡修棉.仲巴地体的板块亲缘性:来自碎屑锆石U-Pb年代学和Hf同位素的证据[J].岩石学报,2012,28(5):289-300.
    [67]温春齐,多吉,范小平,等.西藏普兰石英岩中发现41亿年碎屑锆石[J].地质学报,2006,80(9):1249-1251.
    [68]ZHANG S,LI F,LI Y,et al.Early Ordovician strongly peraluminous granite in the middle section of the Yarlung Zangbo junction zone and its geological significance[J].Science China:Earth Sciences,2014,57:630-643.
    [69]王一伟,谢启兴,白富正,等.西藏江孜雅鲁藏布江结合带南缘断层带特征[J].四川地质学报,2016,36(1):3-6.
    [70]LI S,DING L,XU Q,et al.The evolution of Yarlung Tsangpo River:Constraints from the age and provenance of the Gangdese Conglomerates,southern Tibet[J].Gondwana Research,2015,41(140):249-266.
    [71]梁凤华,许志琴,巴登珠,等.西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨[J].岩石学报,2011,27(11):3255-3268.
    [72]ZHU D C,ZHAO Z D,NIU Y,et al.Lhasa terrane in southern Tibet came from Australia[J].Geology,2011,39(8):727-730.
    [73]ZHU D C,ZHAO Z D,NIU Y,et al.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J].Earth&Planetary Science Letters,2011,301(1-2):241-255.
    [74]张立雪,王青,朱弟成,等.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束[J].岩石学报,2013,29(11):3681-3688.
    [75]黄勇,丁俊,李光明,等.西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义[J].地质学报,2015,89(1):99-108.
    [76]杨志明,谢玉玲,李光明,等.西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究[J].矿床地质,2005,24(6):584-594.
    [77]黄勇,丁俊,李光明,等.西藏冈底斯厅宫铜矿侵入岩成因:LA-ICP-MS锆石U-Pb年龄、地球化学及Sr-Nd-Pb同位素证据[J].地质论评,2015,61(3):664-680.
    [78]杜等虎,杨志明,刘云飞,等.西藏厅宫斑岩铜矿床地质、蚀变及矿化特征研究[J].岩石矿物学杂志,2015,34(4):447-474.
    [79]陈智梁,刘宇平.藏南拆离系[J].沉积与特提斯地质,1996(1):31-51.
    [80]梁维,侯增谦,杨竹森,等.藏南扎西康大型铅锌银锑多金属矿床叠加改造成矿作用初探[J].岩石学报,2013,29(11):3828-3842.
    [81]梁维,杨竹森,郑远川.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J].地质学报,2015,89(3):560-568.
    [82]李应栩,李光明,董随亮,等.西藏扎西康多金属矿床成矿过程中的流体性质演化初探[J].矿物岩石地球化学通报,2015,34(3):571-582.
    [83]李应栩,李光明,董磊,等.西藏措美县马扎拉岩金矿Si/Ca界面类型及控矿作用初探[J].河北地质大学学报,2018,41(1):34-44.
    [84]杨竹森,侯增谦,高伟,等.藏南拆离系锑金成矿特征与成因模式[J].地质学报,2006,80(9):1377-1391.
    [85]郑有业,多吉,马国桃,等.藏南查拉普岩金矿床特征、发现及时代约束[J].地球科学-中国地质大学学报,2007,32(2):185-193.
    [86]LANCELOTA J,VITRACA A,ALLEGRE C J.Uranium and lead isotopic dating with grain-by-grain zircon analysis:Astudy of complex geological history with a single rock[J].Earth and Planetary Science Letters,29:357-366.
    [87]KINNY P D,MAAS ROLAND.Lu-Hf and Sm-Nd isotope systems in zircon[J].Reviews in Mineralogy and Geochemistry,2003,53(1):327-341.
    [88]袁洪林,吴福元,高山.东北地区新生代侵人体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [89]HORN I,RUDNIEK R L,MCDONOUGH W F.Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS:application to U-Pb geochronology[J].Chemical Geology,2000,167:405-425.
    [90]BALLARD J R,PALIN J M,WILLIAMS I S,et al.Two ages of Porphyry intrusion resolved for the super-giant Chuquieamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP[J].Geology,2001,29:383-386.
    [91]KOSLER J,FONNELAND H,SYLVESTER P,et al.U-Pb dating of detrital zireons for sediment provenance studies-a comparison of laser ablation ICPMS and SIMS techniques[J].Chemical Geology,2002,182:605-618.
    [92]吴元保,陈道公,夏群科,等.大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年[J].中国科学(D辑),2003,33(1):20-28.
    [93]YUAN H L,WU F Y,GAO S.La-ICPMS zircon U-Pb age and REEof Cenozoic pluton in NE China[J].Chinese Science Bulletin,2003,48(14):1511-1520.
    [94]LIU Y S,HU Z C,ZONG K Q,et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,55(15):1535-1546.
    [95]LIU Y S,HU Z C,GAO S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257:34-43.
    [96]范晨子,胡明月,赵令浩,等.锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展[J].岩矿测试,2012,31(1):29-46.
    [97]LUDWIG R K.User’s manual for Isoplot 3.70[Z].Berkeley Geochronology Center Special Publication,2008(4):1-76.
    [98]BOYNTON W V.Geochemistry of the rare earth elements:meteorite studies[C]//HENDERSON P.Rare Earth Element Geochemistry.Elservier,1984.
    [99]GRIMES C B,JOHN B E,KELEMEN P B,et al.Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J].Geology,2007,35(7):643-646.
    [100]LEE J K W,WILLIAMS I S,ELLIS D J.Pb,U and Th diffusion in natural zircon[J].Nature,1997,390:159-162.
    [101]CHERNIAK D J,WATSON E B.Diffusion in zircon[J].Reviews in Mineralogy and Geochemistry,2003,53(1):113-143.
    [102]CHERNIAK D J,WATSON E B.Pb diffusion in zircon[J].Chemical Geology,2000,172:5-24.
    [103]吴元保,陈道公,程昊,等.碧溪岭岩体中石榴橄榄岩的锆石显微结构及离子探针定年[J].高校地质学报,2001,7(3):356-362.
    [104]简平,程裕淇,刘敦一.变质锆石成因的岩相学研究-高级变质岩U-Pb年龄解释的基本依据[J].地学前缘,2001,8(3):183-191.
    [105]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [106]PIDGEON R T,NEMCHIN A A,HITCHEN G J.Internal structures of zircons from Archaean granites from the Darling Range batholith:Implications for zircon stability and the interpretation of zircon U-Pb ages[J].Contributions to Mineralogy and Petrology,1998,132(3):288-299.
    [107]VAVRA G,GEBAUER D,SCHMID R,et al.Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone(Southern Alps):An ion microprobe(SHRIMP)study[J].Contributions to Mineralogy and Petrology,1996,122(4):337-358.
    [108]VAVRA G,SCHMID R,GEBAUER D.Internal morphology,habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon:Geochronology of the Ivren Zone(Southern Alps)[J].Contributions to Mineralogy and Petrology,1998,134(4):380-404.
    [109]WU Y B,CHEN D G,XIA Q K,et al.In-situ trace element analyses and Pb-Pb dating of zircons in granulite from Huangtuling,Dabieshan by LAM-ICP-MS[J].Science in China Series D:Earth Sciences,2003,46(11):1161-1170.
    [110]WU Y B,CHEN D G,XIA Q K,et al.In-situ trace element analyses of zircons from Dabieshan Huangzhen eclogite:Trace element characteristics of eclogite-facies metamorphic zircon[J].Chinese Science Bulletin,2002,47(16):1398-1401.
    [111]WU Y B,ZHENG Y F.Genesis of zircon and its constraints on interpretation of U-Pb age[J].Chinese Science Bulletin,2004,49(15):1554-1569.
    [112]裴先治,丁仨平,张国伟,等.西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报,2007,81(6):772-786.
    [113]HANCHAR J M,MILLER C F.Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images:Implications for interpretation of complex crustal histories[J].Chemical Geology,1993,110:1-13.
    [114]HANCHAR J M,RUDNICK R L.Revealing hidden structures:The application of cathodoluminescence and back-scatter electrical imaging to dating zircons from lower crustal xenoliths[J].Lithos,1995,36:289-303.
    [115]CROFU F,HANCHAR J M,HOSKIN P W O,et al.Atlas of zircon textures[J].Reviews in Mineralogy and Geochemistry,2003,53:469-500.
    [116]RUBATTO D,GEBAUER D.Cathodoluminescence in Geoscience[M].Springer-Verlag Berlin Heidelberg,Germany,2000.
    [117]移根旺.锆石成因矿物学研究[J].中国水运(下半月),2008,8(6):259-260.
    [118]吴元伟,周广法,曾现虎.变质锆石成因类型及内部结构、地球化学特征[J].科技创新与应用,2013(26):128-128.
    [119]ZHAI Q G,WANG J,LI C,et al.SHRIMP U-Pb dating and Hf isotopic analyses of Middle Ordovician meta-cumulate gabbro in central Qiangtang,northern Tibetan Plateau[J].Science China Earth Science,2010,53:657-664.
    [120]WATSON E B,HARRISON T M.Zircon thermometer reveals minimum melting conditions on earliest Earth[J].Science,2005,308:841-844.
    [121]BELOUSOVA E A,GRIFFIN W L,O’REILLY S Y,et al.Igneous zircon:Trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology,2002,143(5):602-622.
    [122]HOSKIN P W O,BLACK L P.Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J].Metamorphic Geology,2000,18(4):423-439.
    [123]HOSKIN P W O,IRELAND T R.Rare earth element chemistry of zircon and its use as a provenance indicator[J].Geology,2000,28(7):627-630.
    [124]CHERNIAK D J,HANCHAR J M,WATSON E B.Diffusion of tetravalent cations in zircon[J].Contributions to Mineralogy and Petrology,1997,127(4):383-390.
    [125]HOSKIN P W O,SCHALTEGGER U.The composition of zircon and igneous and metamorphic petrogenesis[J].Reviews in Mineralogy and Geochemistry,2003,53(1):27-62.
    [126]ZARAISKY G P,AKSYUK A M,DEVYATOVA V N,et al.The Zr/Hf ratio as a fractionation indicator of rare-metal granites[J].Petrology,2009,17(1):25-45.
    [127]CLAIBORNE L L,MILLER C F,WALKER A B,et al.Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons:An example from the Spirit Mountain batholith,Nevada[J].Mineralogical Magazine,2006,70(5):517-543.
    [128]LINNEN R L,KEPPLER H.Melt composition control of Zr/Hf fractionation in magmatic processes[J].Geochimica et Cosmochimica Acta,2002,66:3293-3301.
    [129]HANCHAR J M,WATSON E B.Zircon saturation thermometry[J].Reviews in Mineralogy and Geochemistry,2003,53(1):89-112.
    [130]PIDGEON R T,NEMCHIN A A,HITCHEN G J.Internal structures of zircons from Archaean granites from the Darling Range batholith:Implications for zircon stability and the interpretation of zircon U-Pb ages[J].Contributions to Mineralogy and Petrology,1998,132:288-299.
    [131]雷玮琰,施光海,刘迎新.不同成因锆石的微量元素特征研究进展[J].地学前缘,2013,20(4):273-284.
    [132]M?LLER A,O’BRIEN P J,KENNEDY A.Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland(SW Norway)[Z].Geological Society(London)Special Publications,2003,220:65-81.
    [133]UTSUNOMIYA S,CHRIS S,PALENIK C S,et al.Nanoscale occurrence of Pb in an Archean zircon[J].Geochimica et Cosmochimica Acta,2004,68:4679-4686.
    [134]WENDT I,CARL C.The statistical distribution of the mean squared weighted deviation[J].Chemical Geology:Isotope Geoscience section,1991,86:275-285.
    [135]GULSON B L,KROGH T E.Old lead components in the young Bergell Massif,south-east Swiss Alps[J].Contributions to Mineralogy&Petrology,1973,40(3):239-252.
    [136]PANKHURST R J,PIDGEON R T.Inherited isotope systems and the source region pre-history of early Caledonian granites in the Dalradian Series of Scotland[J].Earth&Planetary Science Letters,1976,31(1):55-68.
    [137]HARRISON T M,ALEINIKOFF J N,COMPSTON W.Observations and controls on the occurrence of inherited zircon in Concord-type granitoids,New Hampshire[J].Geochimica Et Cosmochimica Acta,1987,51(9):2549-2558.
    [138]WILLIAMS I S.Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks[J].Transactions of the Royal Society of Edinburgh Earth Sciences,1992,83(1-2):447-458.
    [139]CHIARENZELLI J R,MCLELLAND J M.Granulite facies metamorphism,palaeo-isotherms and disturbance of the U-Pb systematics of zircon in anorogenic plutonic rocks from the Adirondack Highlands[J].Journal of Metamorphic Geology,1993,11(1):59-70.
    [140]LANYON R,BLACK L P,SEITZ H M.U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestfold Hills,East Antarctica[J].Contributions to Mineralogy&Petrology,1993,115(2):184-203.
    [141]H?LZL S,K?HLER H,KR?NER A,et al.U-Pb geochronology of the Sri Lankan basement[J].Precambrian Research,1994,66(1):123-149.
    [142]STERN T W,GOLDICH S S,NEWELL M F.Effects of weathering on the U Pb ages of zircon from the Morton Gneiss,Minnesota[J].Earth&Planetary Science Letters,1966,1(6):369-371.
    [143]GEBAUER D,GRüNENFELDER M.U-Pb zircon and Rb-Sr wholerock dating of low-grade metasediments example:Montagne Noire(Southern France)[J].Contributions to Mineralogy&Petrology,1976,59(1):13-32.
    [144]BLACK L P.Recent Pb loss in zircon:A natural or laboratory-induced phenomenon?[J].Chemical Geology:Isotope Geoscience,1987,65(1):25-33.
    [145]MEZGER K,KROGSTAD E J.Interpretation of discordant U-Pb zircon ages:An evaluation[J].Journal of Metamorphic Geology,1997,15(1):127-140.
    [146]侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.
    [147]HOU Z Q,GAO Y F,QU X M,et al.Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J].Earth&Planetary Science Letters,2004,220(1-2):139-155.
    [148]侯增谦.大陆碰撞成矿论[J].地质学报,2010,84(1):30-58.
    [149]CHUNG S L,CHU M F,ZHANG Y,et al.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J].Earth Science Reviews,2005,68(3):173-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700