用户名: 密码: 验证码:
基于高密度地震反射和砂箱实验的准噶尔盆地南缘霍尔果斯背斜深层构造解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deep structure analysis of Huoerguosi Anticline at the southern margin of Junggar Basin based on high-density seismic reflection and sandbox modeling
  • 作者:马德龙 ; 袁剑英 ; 张虎权 ; 何登发 ; 潘建国 ; 潘树新 ; 王宏斌 ; 魏东涛 ; 王彦君 ; 崔键
  • 英文作者:MA Delong;YUAN Jianying;ZHANG Huquan;HE Dengfa;PAN Jianguo;PAN Shuxin;WANG Hongbin;WEI Dongtao;WANG Yanjun;CUI Jian;Research Institute of Petroleum Exploration and Development-Northwest,PetroChina;Key Laboratory of Reservoir Description,PetroChina;School of Energy Resources in China University of Geosciences,Beijing;Xi'an Center of Geological Survey,CGS;School of Earth Sciences and Engineering in Nanjing University;
  • 关键词:准噶尔盆地南缘 ; 霍尔果斯背斜 ; 砂箱模型 ; 深层结构
  • 英文关键词:southern margin of Junggar Basin;;Huoerguosi Anticline;;sandbox modeling;;deep structure
  • 中文刊名:SYDX
  • 英文刊名:Journal of China University of Petroleum(Edition of Natural Science)
  • 机构:中国石油勘探开发研究院西北分院;中国石油油藏描述重点实验室;中国地质大学(北京)能源学院;中国地质调查局西安地调中心;南京大学地球科学与工程学院;
  • 出版日期:2018-12-20
  • 出版单位:中国石油大学学报(自然科学版)
  • 年:2018
  • 期:v.42;No.230
  • 基金:国家科技重大专项(2016ZX05003-002)
  • 语种:中文;
  • 页:SYDX201806002
  • 页数:10
  • CN:06
  • ISSN:37-1441/TE
  • 分类号:14-23
摘要
利用霍尔果斯背斜高密度三维地震反射资料和砂箱模拟实验,并根据构造几何学的分析方法,获得准噶尔盆地南缘霍尔果斯背斜的深部地质结构及运动学演化过程。结果表明:霍尔果斯背斜高密度三维地震反射揭示安集海河组(E2-3a)滑脱层冲出地表、上盘形成单斜构造;下侏罗统滑脱层与安集海河组(E2-3a)滑脱层构成深部构造楔,构造楔缩短量为2 306 m,平均缩短率为2 mm/a;下侏罗统深部下凹的地震反射特征揭示深层可能发育早期断陷。先存断陷和同构造沉积控制下的双层滑脱构造物理模拟实验结果与霍尔果斯背斜高密度三维地震反射形态相近,并且其运动学特征也一致。获得的霍尔果斯深层构造楔变形速率明显低于前人通过其他方式获得的相邻区域浅层变形速率,可能是由于北天山山前发育多套塑性滑脱层,并在挤压过程中塑性地层内部层间剪切作用造成的;另外,研究区下侏罗统及以下地层可能发育早期的断陷,并对晚期构造变形有一定的控制作用。
        High-density seismic reflection data and sandbox physical modeling method were used to obtain the deep structure and evolution history of the Huoerguosi Anticline at the southern margin of Junggar Basin. E2-3 a detachment fault thrusts northward and outcrops at the ground surface,and the hanging wall layers dip southward to form monoclonal structure. The lower Jurassic detachment is combined with the E2-3 a detachment fault,forming a structural wedge in the deep with shorting up to2 306 m and at a rate of 2 mm/a. The layers below lower Jurassic may develop earlier fault depression. In the sandbox modeling which were controlled by the early fault depression and syn-tectonic sediment,the similar structure style as seen in the seismic profile was obtained,and the kinematic features are consistent between the sandbox modeling and the geological structure obtain from seismic reflection. The shorting rate calculated in this paper is much smaller than that from previous studies of shallow layers or at ground surface,which may result from the velocity difference between layers in multiple detachment layers in this area.The early fault depression structure may exert great influence on the subsequent structural evolution in the region.
引文
[1] BURTMAN V S. Structural geology of the Variscan Tian Shan,USSR[J]. American Journal of Science,1975,12:157-186.
    [2] TAPPONNIER P,MOLNAR P. Active faulting and Cenozoic tectonics of the Tien Shan,Mongolia,and Baykal Regions[J]. Journal of Geophysical Research,1979,84(B7):3425-3459.
    [3] WINDLEY B F,ALLEN M B,ZHANG C,et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tian Shan Range,Central Asia[J]. Geology,1990,18(2):128-131.
    [4] AVOUAC J P,TAPPONNIER P,BAI M,et al. Active thrusting and folding along the northern Tian Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan[J]. Journal of Geophysical Research,1993,98(B4):6755-6804.
    [5]邓起东,冯先岳,张培震,等.乌鲁木齐山前坳陷逆断裂-褶皱带及其形成机制[J].地学前缘,1999,6(4):191-201.DENG Qidong,FENG Xianyue,ZHANG Peizhen,et al.Reverse fault and fold zone in the Urumqi rang-front depression of the northern Tianshan and its genetic mechanism[J]. Earth Science Frontiers,1999,6(4):191-201.
    [6]张玉兰,王伟锋,马宗晋.准噶尔盆地南缘构造物理模拟实验[J].中国石油大学学报(自然科学版),2003,27(3):1-5.ZHANG Yulan,WANG Weifeng,MA Zongjin. Physical simulation experiment on geological structures in the south of Junggar Basin[J]. Journal of China University of Petroleum(Edition of Natural Science),2003,27(3):1-5.
    [7]陈勇,王鑫涛,方世虎,等.准南霍玛吐构造带紫泥泉子组油气成藏流体动力学特征[J].中国石油大学学报(自然科学版),2013,37(3):30-36.CHEN Yong,WANG Xintao,FANG Shihu,et al. Hydrodynamic characteristics of hydrocarbon accumulation in E1-2z of Huo-Ma-Tu structural belt,southern Junggar Basin,NW China[J]. Journal of China University of Petroleum(Edition of Natural Science),2013,27(3):30-36.
    [8]于福生,李国志,杨光达,等.准噶尔盆地南缘褶皱-冲断带变形特征及成因机制模拟[J].大地构造与成矿学,2009,33(3):386-395.YU Fusheng,LI Guozhi,YANG Guangda,et al. Deformation feature and genesis simulation of fold-and-thrust belts in the southern margin,Junggar Basin[J]. Geotectonica et Metallbgenia,2009,33(3):386-395.
    [9] GUAN S W,STOCKMEYER J M,SHAW J H,et al.Structural inversion,imbricate wedging,and out-of-sequence thrusting in the southern Junggar fold-and-thrust belt,northern Tian Shan,China[J]. AAPG,2016,100:1443-1468.
    [10] LU H,DAVID G H,JIA D,et al. Rejuvenation of the Kuqa foreland basin,north flank of the Tarim Basin,Northwest China[J]. International Geology Review,1994,36(12):1151-1158.
    [11] CHARREAU J,CHEN Y,GILDER S,et al. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section(northwest China):implications for Late Cenozoic uplift of the Tianshan mountains[J]. Earth and Planetary Science Letters,2005,230:177-192.
    [12] CHARREAU J,CHEN Y,GILDER S,et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section(northwest China)[J].Tectonics,2009,28(2):224-243.
    [13] SUN J M,XU Q H,HUANG B C. Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian Shan Mountains[J].Journal of Geophysical Research,2007,112(B4):3043-3061.
    [14] SUN J M,ZHU R X,BOWLER J. Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits[J]. Earth and Planetary Science Letters,2014,219:239-253.
    [15]王胜利,CHEN Y,卢华复.天山北麓霍尔果斯背斜晚中新世以来翼旋转方式的生长[J].科学通报,2008,53(12):1414-1421.WANG Shengli,CHEN Y,LU Huafu. Limb rotation growth history of Huoerguosi anticline in the North Tian Shan since late Miocene[J]. Chinese Science Bulletin,53(12):1414-1421.
    [16] LI C X,DUPONT-NIVET G,GUO Z J. Magnetostratigraphy of the Northern Tian Shan foreland,Taxi He section,China[J]. Basin Research,2011,23(1):101-117.
    [17] HENDRIX M S,DUMITRU T A,GRAHAM A S. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan:an early effect of the India-Asia collision[J]. Geology,1994,22(6):487-490.
    [18] DAERON M,AVOUAC J P,CHARREAU J. Modeling the shortening history of a fault tip fold using structural and geomorphic records of deformation[J]. Journal of Geophysical Research, 2007, 112(B03), DOI:10. 1029/2006JB004460.
    [19] CHARREAU J,AVOUAC J P,CHEN Y,et al. Miocene to present kinematics of fault-bend folding across the Huerguosi anticline,northern Tianshan(China),derived from structural,seismic,and magnetostratigraphic data[J]. Geology,2008,36(11):871-874.
    [20] REIGBER C,MICHEL G W,GALAS R,et al. New space geodetic constraints on the distribution of deformation in the Central Asia[J]. Earth and Planetary Science Letters,2001,191(1):157-165.
    [21] WANG Q,ZHANG P Z,FREYMUELLER J T,et al.Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science,2001,294:574-577.
    [22]杨少春,白青林,路智勇,等.东辛地区营26断层变换带形成机制模拟[J].中国石油大学学报(自然科学版),2017,41(1):25-33.YANG Shaochun,BAI Qinglin,LU Zhiyong,et al. Forming mechanism simulation of Ying 26 transfer zone in Dongxin area[J]. Journal of China University of Petroleum(Edition of Natural Science),2017,41(1):25-33.
    [23]李理,时秀朋,胡秋媛,等.双帚状断层的成因和生长发育[J].中国石油大学学报(自然科学版),2017,41(6):41-49.LI Li,SHI Xiupeng,HU Qiuyuan,et al. Mechanism and growth of broom-like faults[J]. Journal of China University of Petroleum(Edition of Natural Science),2017,41(6):41-49.
    [24] EPARD J L,Jr GROSHONG R H. Excess area and depth to detachment[J]. AAPG,1993,77:1291-1302.
    [25] Jr GROSHONG R H,EPARD J L. The role of strain in area-constant detachment folding[J]. Journal of Structural Geology,1994,16(5):613-618.
    [26] GONZALEZ-MIERES R,SUPPE J. Relief and shortening in detachment folds[J]. Journal of Structural Geology,2006,28(10):1785-1807.
    [27] GONZALEZ-MIERES R,SUPPE J. Shortening histories in active detachment folds based on area-of-relief methods[J]. AAPG Memoir,2011,94:39-67.
    [28] Jr GROSHONG R H,WITHJACK M O,SCHLISCHE R W,et al. Bed length does not remain constant during deformation:recognition and why it matters[J]. Journal of Structural Geology,2012,41:86-97.
    [29] WILTSCHKO D V,Jr GROSHONG R H. Why did Chamberlin go wrong? Context and contribution of Chamberlin(1910)[J]. Journal of Structural Geology,2012,41:7-23.
    [30] SCHLISCHE R W,Jr GROSHONG R H,WITHJACK M O. Quantifying the geometry,displacements,and subresolution deformation in thrust-ramp anticlines with growth and erosion:from models to seismic-reflection profile[J]. Journal of Structural Geology,2014,69:304-319.
    [31] BURCHFIEL B C,BROWN E T,DENG Q D,et al.Crustal shortening on the margins of the Tian Shan,Xinjiang,China[J]. International Geology Review,1999,41(8):663-700.
    [32] SUPPE J,CONNORS C D,ZHANG Y. Shear fault-bend folding[J]. AAPG Memoir,2004,82:303-323.
    [33] YANG W,JOLIVET M,DUPONT-NIVET G,et al. Source to sink relations between the Tian Shan and Junggar Basin(northwest China)from Late Palaeozoic to Quaternary:evidence fromdetrital U-Pb zircon geochronology[J]. Basin Research,2013,25:219-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700