用户名: 密码: 验证码:
长白山孤山屯泥炭沼泽活性有机碳研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Labile Organic Carbon in the Gushantun Peat Bog in Changbai Mountains
  • 作者:史思雪 ; 张稳 ; 王平
  • 英文作者:SHI Sixue;ZHANG Wen;WANG Ping;State Environment Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment,Northeast Normal University;
  • 关键词:泥炭沼泽 ; 可溶性有机碳 ; 微生物量碳 ; 孤山屯
  • 英文关键词:peat bog;;dissolved organic carbon;;microbial biomass carbon;;Gushantun
  • 中文刊名:KXSD
  • 英文刊名:Wetland Science
  • 机构:国家环境保护湿地生态与植被恢复重点实验室东北师范大学环境学院;
  • 出版日期:2016-04-15
  • 出版单位:湿地科学
  • 年:2016
  • 期:v.14
  • 基金:国家自然科学基金项目(31470018);; 吉林省科技发展计划项目(20130101101JC);; 东北师范大学中央高校基本科研业务专项项目资助
  • 语种:中文;
  • 页:KXSD201602021
  • 页数:7
  • CN:02
  • ISSN:22-1349/P
  • 分类号:148-154
摘要
土壤活性有机碳既是土壤微生物的活动能源,又是土壤养分循环的主要驱动力。2013年5~10月中旬,在吉林省辉南县孤山屯泥炭沼泽中,对瘤囊薹草(Carex schmidtii)—小叶章(Calamagrostis angustifolia)群落、薹草(Carex spp.)群落和薹草—柳叶绣线菊(Spiraea salicifolia)群落泥炭沼泽0~40 cm深度土壤微生物量碳和水中可溶性有机碳含量分布及其影响因素进行了研究。研究结果表明,各植物群落泥炭沼泽0~20 cm深度土层中的微生物量碳质量浓度在92.40~478.96 g/m~3范围内变化,瘤囊薹草—小叶章群落泥炭沼泽土壤中的微生物量碳含量最低;20~40 cm深度土层中的微生物量碳质量浓度在48.45~348.88 g/m~3范围内变化,在20~40 cm深度土层,各采样日都是薹草—柳叶绣线菊群落泥炭沼泽土壤的微生物量碳质量浓度相对最大,其它依次为薹草群落、瘤囊薹草—小叶章群落;各植物群落泥炭沼泽0~20 cm和20~40 cm深度水中的可溶性有机碳质量浓度的变化范围分别为28.99~53.69 mg/L和22.20~66.71 mg/L;6个采样日,薹草群落和薹草—柳叶绣线菊群落泥炭沼泽0~20 cm深度土层微生物量碳含量明显大于20~40 cm深度土层,而薹草群落泥炭沼泽20~40 cm深度水中的可溶性有机碳含量都高于上层;微生物量碳含量的对数与可溶性碳含量的对数为负相关关系;土壤微生物量碳含量的主要影响因素是土壤有机碳含量、全氮含量、全磷含量、氮磷比、硝态氮含量和水位,水中可溶性有机碳含量的主要影响因素是总氮含量、总磷含量和0 cm土壤温度。
        The labile organic carbon, including dissolved organic carbon and microbial biomass carbon, is both the energy source for soil microbial activity and the main driver for soil nutrients cycle. The changes of soil carbon pool mainly occur in the labile organic carbon pool. In this study, on the 15 th of May to October, 2013,at soil layers of 0-20 cm and 20-40 cm depths, the contents of dissolved organic carbon in the water and microbial biomass carbon in the soil with Carex schmidtii-Calamagrostis angustifolia, Carex spp.-Spiraea salicifolia and Carex spp. communities were investigated in the Gushantun peat bog, Jilin province. There was no significant fluctuation of the contents of the microbial biomass carbon at the bog in the sampling days. The concentrations of the microbial biomass carbon at 0-20 cm and 20-40 cm depths were 92.40 g/m~3 to 478.96 g/m~3and48.45 g/m~3 to 348.88 g/m~3, respectively. The concentration of the microbial biomass carbon in the soil of20-40 cm depth with Carex schmidtii-Calamagrostis angustifolia community was the lowest significantly than those of other communities at the same depths in every sampling day. The contents of the microbial biomass carbon in the soil of the 0-20 cm depth with Carex spp. community and Carex spp.-Spiraea salicifolia community were higher than those at 20-40 cm depth. The concentrations of the dissolved organic carbon in the water at both depths were 28.99 mg/L to 53.69 mg/L and 22.20 mg/L to 66.71 mg/L, respectively. There was negative correlation relationship between the base 10 logarithm of contents of dissolved organic carbon and microbial biomass carbon at 0-40 cm depth, which indicated a trade-off relationship between them. Main environmental factors that influenced the content of dissolved organic carbon were contents of total nitrogen and total phosphorus and soil surface temperature, and the contents of organic carbon, total nitrogen and total phosphorus, nitrogen and phosphorous ratio, nitrate nitrogen, and water level for the content of microbial biomass carbon.
引文
[1]Jenkinson D S,Ladd J N.Microbial biomass in soil:measurement and turnover[C]//Paul E A,Ladd J N.Soil Biochemistry.New York:Marcel Dekker,1981:415-471.
    [2]孔凡亭,李悦,郗敏,等.湿地土壤溶解性有机碳研究进展[J].青岛理工大学学报,2013,34(3):64-70.
    [3]倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究[J].植物营养与肥料学报,2001,7(1):56-63.
    [4]张雪雯,莫熠,张博雅,等.干湿交替及凋落物对若尔盖泥炭土可溶性有机碳的影响[J].湿地科学,2014,12(2):134-140.
    [5]高俊琴,徐兴良,张锋,等.水分梯度对若尔盖高寒湿地土壤活性有机碳分布的影响[J].水土保持学报,2008,22(3):126-131.
    [6]赖建东,田昆,郭雪莲,等.纳帕海湿地土壤有机碳和微生物量碳研究[J].湿地科学,2014,12(1):49-54.
    [7]黄昕琦,李琳,吕烨,等.内蒙古乌梁素海湿地土壤有机碳组成与碳储量[J].湿地科学,2015,13(2):252-257.
    [8]王宁宁,胡毅,王新军,等.新疆巴音布鲁克天鹅湖湿地有机碳储量初步估算[J].湿地科学,2015,13(3):369-373.
    [9]侯翠翠,宋长春,李英臣,等.不同水分条件沼泽湿地土壤轻组有机碳与微生物活性动态[J].中国环境科学,2012,32(1):113-119.
    [10]仲启铖.温度和水位对滨海围垦湿地碳过程的影响——以崇明东滩为例[D].上海:华东师范大学,2013.
    [11]邵学新,杨文英,吴明,等.杭州湾滨海湿地土壤有机碳含量及其分布格局[J].应用生态学报,2011,22(3):658-664.
    [12]刘子刚,王铭,马学慧.世界泥炭地有机碳储量和有机碳密度[J].湿地科学,2014,12(3):279-285.
    [13]国志兴,张晓宇,王宗明,等.东北地区植被物候期遥感模拟与变化规律[J].生态学杂志,2010,29(1):165-172.
    [14]Frey S D,Drijber R,Smith H,et al.Microbial biomass,functional capacity,and community structure after 12 years of soil warming[J].Soil Biology and Biochemistry,2008,40(11):2904-2907.
    [15]谭桂霞,刘菀秋,李莲莲,等.湿地松林分结构调整对活性有机碳的影响[J].应用生态学报,2014,25(5):1307-1312.
    [16]周旺明,王金达,刘景双,等.冻融对湿地土壤可溶性碳、氮、和氮矿化的影响[J].生态与农村环境学报,2008,24(3):1-6.
    [17]庞学勇,包维楷,吴宁.森林生态系统土壤可溶性有机质(碳)影响因素研究进展[J].应用与环境生物学报,2009,15(3):390-398.
    [18]万忠梅,宋长春,杨桂生,等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报,2009,29(2):406-412.
    [19]侯翠翠,宋长春,李英臣,等.不同水分条件下小叶章湿地表土有机碳及活性有机碳组分季节动态[J].环境科学,2011,32(1):290-297.
    [20]Barbhuiya A R,Arunachalam A,Pandey H N,et al.Dynamics of soil microbial biomass C,N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest[J].European Journal of Soil Biology,2004,40(3-4):113-121.
    [21]Neff J C,Hooper D U.Vegetation and climate controls on potential CO2,DOC and DON production in northern latitude soils[J].Global Change Biology,2002,8(9):872-884.
    [22]宋长春,王毅勇,阎百兴,等.沼泽湿地开垦后土壤水热条件变化与碳、氮动态[J].环境科学,2004,25(3):150-154.
    [23]Ruan H H,Zou X M,Scatena F N,et al.Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest[J].Plant and Soil,2004,260(1-2):147-154.
    [24]欧伟,李琪,梁文举,等.不同水分管理方式对稻田土壤微生物学特性的影响[J].生态学杂志,2004,23(5):53-56.
    [25]涂利华,胡庭兴,张健,等.模拟氮沉降对华西雨屏区苦竹林细根特性和土壤呼吸的影响[J].应用生态学报,2010,21(10):2472-2478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700