用户名: 密码: 验证码:
基于非结构网格求解器的CHN-T1标模气动特性计算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical investigation on aerodynamic performance of a standard model CHN-T1 using an unstructured flow solver
  • 作者:许晨舟 ; 乔建领 ; 聂晗 ; 汪远 ; 宋敏华 ; 张阳 ; 韩忠华 ; 宋文萍
  • 英文作者:XU Chenzhou;QIAO Jianling;NIE Han;WANG Yuan;SONG Minhua;ZHANG Yang;HAN Zhonghua;SONG Wenping;Institute of Aerodynamic and Multidisciplinary Design Optimization,Key Laboratory of Science and Technology on Aerodynamic Design and Research,School of Aeronautics,Northwestern Polytechnical University;
  • 关键词:大型运输机 ; RANS方程 ; 气动性能 ; 非结构网格求解器 ; CHN-T1标模
  • 英文关键词:large transport aircraft;;RANS equations;;aerodynamic performance;;unstructured flow solver;;CHN-T1model
  • 中文刊名:KQDX
  • 英文刊名:Acta Aerodynamica Sinica
  • 机构:西北工业大学航空学院气动与多学科优化设计研究所翼型叶栅空气动力学重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:空气动力学学报
  • 年:2019
  • 期:v.37;No.175
  • 基金:国家自然科学基金项目(11772261);; 航空科学基金项目(2016ZA53011);; CFD前沿技术项目(2015-F-016)
  • 语种:中文;
  • 页:KQDX201902015
  • 页数:10
  • CN:02
  • ISSN:51-1192/TK
  • 分类号:129-138
摘要
高可信度计算流体力学(CFD)技术在大型运输机精细化气动设计中发挥着越来越重要的作用。虽然目前基于RANS方程的数值模拟技术已经应用于大型运输机复杂外形的气动性能计算与分析中,但其可信度仍需进一步确认。针对AeCW-1组委会发布的CHN-T1运输机标模,采用基于RANS方程的非结构网格求解器TNS进行了气动性能计算,并与组委会提供的风洞试验结果进行了对比。此外,还研究了网格量和湍流模型等因素对巡航气动特性计算结果的影响,以及支撑干扰和静气弹变形对跨声速抖振特性的影响。结果表明,TNS预测的巡航升阻比及跨声速抖振特性等气动性能与试验值吻合良好,计算结果完全位于试验值误差带内,验证了所采用的非结构网格求解器在大型运输机复杂外形气动力预测中的可靠性。
        Nowadays,high-fidelity computational fluid dynamics(CFD)technology plays an increasingly important role in aerodynamic shape design and large transport aircraft optimization.Despite the wide application of Reynolds-averaged Navier-Stokes(RANS)flow solvers to aerodynamic performance analysis for complex aircraft configurations in transonic flows,there is still a strong need to verify these solvers.An unstructured RANS solver TNS is used to predict both the cruise performance and buffeting-characteristics of a standard transport model CHN-T1,which is released by the 1 st aeronautics CFD credibility workshop(AeCW-1)organizing committee.The computed results are compared with the wind-tunnel experimental data.The influence of mesh size and turbulence model on the cruising performance prediction is studied and the effects of support interference,and static aeroelastic deformation on the buffeting characteristics computation are analyzed.The results show that the predicted aerodynamic performance including lift-to-drag ratio at the cruising condition is in very good agreement with experimental data,with all the values located within the error bar of experimental data.This good agreement indicates the reliability and accuracy of the TNS solver for the design and aerodynamic performance analysis of large transport aircrafts.
引文
[1]高正红,王超.飞行器气动外形设计方法研究与进展[J].空气动力学学报,2017,35(4):516-528.doi:10.7638/kqdlxxb-2018.0058GAO Z H,WANG C.Aerodynamic shape design methods for aircraft:status and trends[J].Acta Aerodynamica Sinica,2017,35(4):516-528.(in Chinese)
    [2]熊俊涛,乔志德,韩忠华.基于Navier-Stokes方程跨声速翼型和机翼气动优化设计[J].空气动力学学报,2007,25(1):29-33.XIONG J T,QIAO Z D,HAN Z H.Aerodynamic optimization design of transonic airfoil and wing based on Navier-Stokes equations[J].Acta Aerodynamica Sinica,2007,25(1):29-33.(in Chinese)
    [3]王运涛.DPW IV~DPW VI数值模拟技术综述[J].航空学报,2018,39(4):021836.WANG Y T.An overview of DPW IV~DPW VI numerical simulation technology[J].Acta Aeronautica et Astronautica Sinica,2018,39(4):021836.(in Chinese)
    [4]王运涛.HiLiftPW-1~HiLiftPW-3数值模拟技术综述[J].航空学报,2018,39(7):021997.WANG Y T.An overview of HiLiftPW-1 to HiLiftPW-3numerical simulation technologies[J].Acta Aeronautica et Astronautica Sinica,2018,39(7):021997.(in Chinese)
    [5]王运涛,孙岩,王光学,等.DLR-F6翼身组合体的高阶精度数值模拟[J].航空学报,2015,36(9):2923-2929.WANG Y T,SUN Y,WANG G X,et al.High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J].Acta Aeronautica et Astronautica Sinica,2015,36(9):2923-2929.(in Chinese)
    [6]王运涛,孟德虹,孙岩,等.DLR-F6/FX2B翼身组合体构型高阶精度数值模拟[J].航空学报,2016,37(2):484-490.WANG Y T,MENG D H,SUN Y,et al.High-order accuracy numerical simulation of DLR-F6/FX2B wing-body configuration[J].Acta Aeronautica et Astronautica Sinica,2016,37(2):484-490.(in Chinese)
    [7]SLOTNICK J,KHODADOUST A,ALONSO J,et al.CFDVision 2030 Study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R].Washington,D C:NASA,2014.
    [8]王刚,叶正寅.三维非结构混合网格生成与N-S方程求解[J].航空学报,2003,24(5):385-390.WANG G,YE Z Y.Generation of three dimensional mixed and unstructured grids and its application in solving Navier-Stokes equations[J].Acta Aeronautica et Astronautica Sinica,2003,24(5):385-390.(in Chinese)
    [9]ROY C J.Summary of data from the Sixth AIAA CFD drag prediction workshop:Case 1code verification[C].55th AIAAAerospace Sciences Meeting,AIAA SciTech Forum,AIAA2017-1206.
    [10]ABDOL-HAMID K S,CARLSON J,RUMSEY C L,et al.DPW-6results using FUN3D with focus on k-kL-MEAH2015turbulence model[C].55th AIAA Aerospace Sciences Meeting,AIAA SciTech Forum,AIAA 2017-0962.
    [11]MICHAL T R,BABCOCK D,KAMENETSKIY D S,et al.Comparison of fixed and adaptive unstructured grid results for drag prediction workshop 6[C].55th AIAA Aerospace Sciences Meeting,AIAA SciTech Forum,AIAA 2017-0961.
    [12]TINOCO E N,BRODERSEN O,KEYE S,et al.Summary of data from the sixth AIAA CFD drag prediction workshop:CRM Cases 2 to 5[C].55th AIAA Aerospace Sciences Meeting,AIAA SciTech Forum,AIAA 2017-1208.
    [13]DERLAGA J M,MORRISON J H.Statistical analysis of CFDsolutions from the sixth AIAA drag prediction workshop[C].55th AIAA Aerospace Sciences Meeting,AIAA SciTech Forum,AIAA 2017-1209.
    [14]SLOTNICK J,HANNON J,CHAFFIN M.Overview of the1st AIAA CFD high lift prediction workshop[C].AIAAAerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.2013.
    [15]BALIN R,JANSENK E.A comparison of RANS,URANS,and DDES for high lift systems from HiLiftPW-3[C].2018AIAA Aerospace Sciences Meeting,AIAA 2018-1254.
    [16]ELIASSON P,CATALANO P,PAPE M C L,et al.Improved CFD predictions for high lift flows in the European project EUROLIFT II[C].25th AIAA Applied Aerodynamics Conference,DLR,AIAA 2007-4303.
    [17]余永刚,周铸,黄江涛,等.单通道客机气动标模CHN-T1设计[J].空气动力学学报,2018,36(3):505-513.doi:10.7638/kqdlxxb-2018.0072YU Y G,ZHOU Z,HUANG J T,et al.Aerodynamic design of a standard model CHN-T1for single-aisle passenger aircraft[J].Acta Aerodynamica Sinica,2018,36(3):505-513.(in Chinese)
    [18]李强,刘大伟,许新,等.CHN-T1标模2.4米风洞气动特性试验研究[J].空气动力学学报,2019,37(2):337-344.doi:10.7638/kqdlxxb-2018.0099LI Q,LIU D,XU X,et al.Experimental study of aerodynamic characteristic of CHN-T1standard model in 2.4 mtransonic wind tunnel[J].Acta Aerodynamica Sinica,2019,37(2):337-344.(in Chinese)
    [19]王年华,常兴华,赵钟,等.基于HyperFLOW平台的客机标模CHN-T1气动性能预测及可信度研究[J].空气动力学学报,2019,37(2):301-309.doi:10.7638/kqdlxxb-2018.0183WANG N H,CHANG X H,ZHAO Z,et al.Aerodynamic performance prediction and credibility study of the transport model CHN-T1 based on HyperFLOW solver[J].Acta Aerodynamica Sinica,2019,37(2):301-309.(in Chinese)
    [20]张耀冰,唐静,陈江涛,等.基于非结构混合网格的CHN-T1标模气动特性预测[J].空气动力学学报,2019,37(2):262-271.doi:10.7638/kqdlxxb-2018.0201ZHANG Y B,TANG J,CHEN J T,et al.Aerodynamic characteristics prediction of CHN-T1 standard model with unstructured grid[J].Acta Aerodynamica Sinica,2019,37(2):262-271.(in Chinese)
    [21]李伟,王运涛,洪俊武,等.采用TRIP3.0模拟CHN-T1模型气动特性[J].空气动力学学报,2019,37(2):272-279.doi:10.7638/kqdlxxb-2018.0225LI W,WANG Y T,Hong J W,et al.Aerodynamic characteristics simulation of CHN-T1model with TRIP3.0[J].Acta Aerodynamica Sinica,2019,37(2):272-279.(in Chinese)
    [22]ECIBINIB T D,PALACIOS F,COPELAND S R,et al.SU2:An open-source suife for multiphysics simulation and design[J].AIAA J,2015,54(3):1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700