用户名: 密码: 验证码:
基于S-A与SSG/LRR-ω两种湍流模型的CHN-T1标模计算与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical inverstigation and discussion on CHN-T1benchmark model using Spalart-Allmaras model and SSG/LRR-ω model
  • 作者:聂胜阳 ; 王垠 ; 刘志强 ; 金朋 ; 焦瑾
  • 英文作者:NIE Shengyang;WANG Yin;LIU Zhiqiang;JIN Peng;JIAO Jin;The School of Civil Engineering and Architecture,Xi'an University of Technology;The School of Aircraft,Xi'an Aeronautical University;
  • 关键词:CHN-T1标模 ; S-A模型 ; 雷诺应力模型 ; 尾撑效应 ; 静气弹效应
  • 英文关键词:CHN-T1benchmark model;;Spalart-Allmaras model;;Reynolds stress model;;the tail-supporting string effect;;static aeroelasticity effect
  • 中文刊名:KQDX
  • 英文刊名:Acta Aerodynamica Sinica
  • 机构:西安理工大学土木建筑工程学院;西安航空学院飞行器学院;
  • 出版日期:2019-04-15
  • 出版单位:空气动力学学报
  • 年:2019
  • 期:v.37;No.175
  • 基金:国家自然科学基金项目(11802234)
  • 语种:中文;
  • 页:KQDX201902017
  • 页数:11
  • CN:02
  • ISSN:51-1192/TK
  • 分类号:148-157+166
摘要
通过求解雷诺平均Navier-Stokes方程,对第一届AeCW-1研讨会上要求的所有工况进行了计算,着重研究S-A湍流模型和雷诺应力模型在CHN-T1标模上的表现,评估两种湍流模型的网格收敛性,对抖振特性的模拟能力以及对雷诺数的敏感性。根据与实验数据的对比分析,得出主要结论如下:两种湍流模型都能趋向于网格收敛,雷诺应力模型的网格收敛更快。在较大迎角的工况,两种湍流模型对机翼上激波诱导的分离流有较大的差别。CHN-T1标模的尾撑,改变了飞机平尾的压力分布,并且在飞机机尾上产生复杂的三维分离流动,对俯仰力矩系数的准确计算产生了较大的影响。考虑静气弹效应,两种湍流模型计算的力矩系数比不考虑静气弹效应更大,雷诺应力模型的偏差更大。在高雷诺数工况,两种湍流模型的计算结果趋于一致。
        By solving Reynolds averaged Navier-Stokes equations,all cases of the CHN-T1 benchmark aircraft configuration from the first AeCW-1 conference were investigated in detail using Spalart-Allmaras model and Reynolds stress model,respectively.The behaviors of the two models on this test case were specifically discussed and investigated,in order to evaluate the ability regarding approach the grid convergence,the accuracy for the prediction of the aircraft operating near the buffeting envelop,as well as the sensitivity of the two models to Reynolds number.After comparing the computations with the experimental data,the main conclusions are organized as the following:Both turbulence models can achieve final grid convergence,and the RSM can faster grid convergence than the S-A model.For the cases with high angles of attack,where shock-induced separation can occur,the computations using the two models significantly differ to each other.The tail-supporting string of the CHN-T1 model has a great impact on the pressure distribution of the horizontal tail.The present of the tail-supporting string induces a complex turbulence separation on the tail of the fuselage,which is difficult to be predicted accurately.The computations with the static aeroelastic deformation yield poor agreement of the moment coefficient with the experimental data,especially for the RSM model.For cases operating at higher Reynolds number,the results predicted by the two models are closer.
引文
[1]余永刚,周铸,黄江涛,等.单通道客机气动标模CHN-T1设计[J].空气动力学学报,2018,36(3):505-513.YU Y G,ZHOU Z,HUANG J T,et al.Aerodynamic design of a standard model CHN-T1 for single-aisle passenger aircraft[J].Acta Aerodynamica Sinica,2018,36(3):505-513.(in Chinese)
    [2]李强,刘大伟,许新,等.CHN-T1标模2.4米风洞气动特性试验研究[J].空气动力学学报,2019,37(2):337-344.doi:10.7638/kqdlxxb-2018.0099LI Q,LIU D,XU X,et al.Experimental study of aerodynamic characteristic of CHN-T1standard model in 2.4m transonic wind tunnel[J].Acta Aerodynamica Sinica,2019,37(2):337-344.(in Chinese)
    [3]SPALART P,ALLMARA S.One-equation turbulence model for aerodynamic flows[C].30th Aerospace Sciences Meeting and Exhibit,Aerospace Sciences Meetings,AIAA 1992-439,1992.
    [4]MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
    [5]SHUR M L,STRELETS M K,TRAVIN A K,et al.Turbulence modeling in rotating and curved channels:assessing the spalart-shur correction[J].AIAA Journal,2000,38(5):784-792
    [6]MANI M,LADD J A,BOWER W W.Rotation and curvature correction assessment for one and two-equation turbulence models[J]Journal of Aircraft,2004,41(2):268-273.
    [7]SPALART P R.Strategies for turbulence modeling and simulation[J].International Journal of Heat and Fluid Flow,2000,21(3):252-263.
    [8]MANI M,BABCOCK D A,WINKLER C M,et al.Predictions of a supersonic turbulent flow in a square duct[C].51st AIAAAerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,AIAA 2013-0860,January 2013.
    [9]YAMAMOTO K,TABAKA K,MURAYAMA M.Comparison study of drag prediction for the 4th CFD drag prediction workshop using structured and unstructured mesh methods[C].28th AIAA Applied Aerodynamics Conference,AIAA 2010-4222,June 2010.
    [10]YAMAMOTO K,TANAKA K,MURAYAMA M.Effect of a nonlinear constitutive relation for turbulence modeling on predicting flow separation at wing-body juncture of transonic commercial aircraft[C].30th AIAA Applied Aerodynamics Conference,AIAA 2012-2895,June 2012.
    [11]KEYE S,TOGITI V,EISFELD B,et al.Investigation of fluidstructure-coupling and turbulence model effects on the DLRresults of the fifth AIAA CFD drag prediction workshop[C].31st AIAA Applied Aerodynamics Conference,AIAA 2013-2509,June 2013.
    [12]EISFELD B.Implementation of Reynolds stress models into the DLR-FLOWer code[R].Institutsbericht,DLR-IB 124-2004/31,Report of the Institute of Aerodynamics and Flow Technology,Braunschweig,ISSN 1614-7790,2004.
    [13]CECORA R D,EISFELD B,PROBST A,et al.Differential Reynolds stress modeling for aeronautics[J].AIAA Journal,2015,53(3):739-755.
    [14]EISFELD B,BRODERSEN O.Advanced turbulence modeling and stress analysis for the DLR-F6 configuration[C].23rd AIAA Applied Aerodynamics Conference,AIAA 2005-4727,June 2005.
    [15]WILCOX D C.Turbulence modeling for CFD[M].3rd ed.,DCW Industries,Inc.,2006.
    [16]LEE-RAUSCH E M,RUMSEY C L,EISFELD B.Application of a full Reynolds stress model to high lift flows[C].46th AIAAFluid Dynamics Conference.AIAA 2016-3944,June 2016.
    [17]RUMSEY C L.Application of Reynolds stress models to separated aerodynamic flows[M].Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics.Springer International Publishing,2015:19-37.
    [18]DUDEK J,CARLSON J R.Evaluation of full Reynolds stress turbulence models in Fun3D[C].AIAA Aerospace Sciences Meeting.2017.
    [19]SLOTNICK J,KHODADOUST A,ALONSO J,et al.CFDvision 2030 study:a path to revolutionary computational aerosciences[R].NASA CR-2014-218178,2014.
    [20]TOGITI V K.EISFELD B.Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model(Invited)[C].22nd AIAA Computational Fluid Dynamics Conference,AIAA 2015-2925,June 2015.
    [21]NIE S Y,KRIEMMELBEIN N,KRUMBEIN A,et al.Coupling of a Reynolds stress model with theγ-Reθttransition model[J].AIAA Journal,2018,56(1):146-157.
    [22]NIE S Y,KRIMMELBEIN N,KRUMBEIN A,et al.Extension of a Reynolds-stress-based transition transport model for crossflow transition[J].Journal of Aircraft,2018,55)(4):1641-1654.
    [23]聂胜阳,高正红,黄江涛.EARSM和DRSM在亚音速旋涡流动中的应用[J].应用力学学报,2011,28(6):602-607.NIE S Y,GAO Z H,HUANG J T.Application of EARSM and DRSM in subsonic vortex flow[J].Chinese Journal of Applied Mechanics,2011,28(6):602-607.(in Chinese)
    [24]聂胜阳,高正红,黄江涛.微分雷诺应力模型在激波分离流中的应用[J].空气动力学学报,2012,30(1):52-56.NIE S Y,GAO Z H,HUANG J T.Differential Reynolds stress model for shock&separated flow[J].Acta Aerodynamica Sinica,2012,30(1):52-56.(in Chinese)
    [25]董义道,王东方,王光学,等.雷诺应力模型的初步应用[J].国防科技大学学报,2016,38(4):46-53.DONG Y D,WANG D F,WANG G X,et al.Preliminary application of Reynbolds stress model[J].Journal of National University of Defense Technology,2016,38(4):46-53.(in Chinese)
    [26]王年华,常兴华,赵钟,等.基于HyperFLOW平台的客机标模CHN-T1气动性能预测及可信度研究[J].空气动力学学报,2019,37(2):301-309.doi:10.7638/kqdlxxb-2018.0183WANG N H,CHANG X H,ZHAO Z,et al.Aerodynamic performance prediction and credibility study of the transport model CHN-T1 based on HyperFLOW solver[J].Acta Aerodynamica Sinica,2019,37(2):301-309.(in Chinese)
    [27]张耀冰,唐静,陈江涛,等.基于非结构混合网格的CHN-T1标模气动特性预测[J].空气动力学学报,2019,37(2):262-271.doi:10.7638/kqdlxxb-2018.0201ZHANG Y B,TANG J,CHEN J T,et al.Aerodynamic characteristics prediction of CHN-T1 standard model with unstructured grid[J].Acta Aerodynamica Sinica,2019,37(2):262-271.(in Chinese)
    [28]RUMSEY C L.Turbulence modeling resource[EB/OL].[2018-10-06].http://turbmodels.larc.nasa.gov
    [29]李伟,王运涛,洪俊武,等.采用TRIP3.0模拟CHN-T1模型气动特性[J].空气动力学学报,2019,37(2):272-279.doi:10.7638/kqdlxxb-2018.0225.LI W,WANG Y T,HONG J W,et al.Aerodynamic characteristics simulation of CHN-T1model with TRIP3.0[J].Acta Aerodynamica Sinica,2019,37(2):272-279.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700