用户名: 密码: 验证码:
液氮温区Ω形轴向槽道热管的启动特性与传热性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Start-up and heat transfer performance of a nitrogen cryogenic axial Ω shape grooved heat pipe
  • 作者:张畅 ; 谢荣建 ; 孙琦 ; 张添 ; 吴亦农 ; 洪芳军
  • 英文作者:ZHANG Chang;XIE Rongjian;SUN Qi;ZHANG Tian;WU Yinong;HONG Fangjun;Shanghai Institute of Technical Physics , Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Mechanical and Power Engineering, Shanghai Jiaotong University;
  • 关键词:槽道热管 ; 液氮温区 ; 启动特性 ; 超临界流体 ; 充液率 ; 传热 ; 气液平衡
  • 英文关键词:grooved axial heat pipe;;liquid nitrogen temperature region;;starting characteristic;;supercritical fluid;;filling rate;;heat transfer;;vapor liquid equilibria
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国科学院上海技术物理研究所;中国科学院大学;上海交通大学机械与工程学院;
  • 出版日期:2019-06-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 基金:国家自然科学基金(51776121)
  • 语种:中文;
  • 页:HGJZ201906008
  • 页数:8
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:78-85
摘要
基于空间深低温热传输需求设计了一套带有常温储气库的氮工质Ω形轴向槽道热管,并对其启动特性和传热性能进行实验研究,对比了槽道热管在不同充液率和放置角度下的传热性能。结果发现:热管在常温下启动迅速,绝热段及蒸发段在冷凝段降温至液氮温区后可以在短时间内降温,热管均温性良好。槽道热管能够在70~110K温度范围内高效传热,热阻随运行温度和热负荷的上升而减小。热管的充液率为100%时其传热性能最优,过大或过小会使得热管传热性能下降。储气库结构可以减小热管工作温度变化对其充液率的影响,利于其在更大的温度范围内获得更好的传热性能。热管的放置形态对其传热性能有显著影响,不同的放置形态会影响热管的传热极限和传热热阻。当热源处于蒸发段管线下端时性能最优,最大传输功率为45W,热阻最低为0.31K/W。
        Equipped with a gas storage working at room temperature, a set of Ω-shaped axial grooved heat pipe filled with nitrogen serving as the working fluid was designed in this paper to meet the heat transport demand in cosmically cryogenic environment. Its starting characteristic and heat transfer performance were studied based on experiments. Different heat transfer properties were compared on the conditions of varied filling rates and placements at different angles. The conclusion was drawn as follows:the heat pipe started soon at a normal temperature. Its adiabatic section and evaporator section cooled within a short time span as soon as the temperature of condensation section lowered to a certain degree of the liquid nitrogen temperature zone and the thermal homogeneity performed well. The grooved heat pipe conducted heat with high efficiency within temperature zone 70—110 K and the thermal resistance decreased with the increase of operating temperature and thermal load. Its heat transfer property peaked when the filling rate reached 100%. Excessive filling rate, be it high or low, will lead to the decrease of the property. The gas storage can alleviate the effect on filling rate resulted from the change in the working temperature of the heat pipe, which contributed to the better heat transfer property in a wider temperature range. The angles at which the heat pipe was placed affected the heat transfer limitation and heat transfer resistance apparently. When the heat source was placed at the lowest end of pipeline belonging to the evaporator section the property performed best with the maximum transmission power 45 W and the lowest heat resistance 0.31 K/W.
引文
[1]何江,苗建印,张红星,等.航天器深低温热管技术研究现状及发展趋势[J].真空与低温, 2018, 24(1):1-8.HE J, MIAO J Y, ZHANG H X, et al. Current statys and development trend of cryogenic heat pipe technologies in spacecraft[J]. Vacuum&Cryogenics, 2018, 24(1):1-8.
    [2] JIAO A J, MA H B, CRITSER J K. Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves[J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16):2905-2911.
    [3] STEPHAN P C, BUSSE C A. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls[J]. International Journal of Heat and Mass Transfer, 1992, 35(2):383-391.
    [4] KHRUSTALEV D, FAGHRI A. Thermal analysis of a micro heat pipe[J]. Journal of Heat Transfer, 1994, 116(1):189-198.
    [5] KIM S J, SEO J K, DO K H. Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure[J]. International Journal of Heat and Mass Transfer, 2003, 46(11):2051-2063.
    [6] IRIARTE W R. Heat pipe with capillary groove and floating artery:US4058159[P]. 1977-11-15.
    [7]曲燕.重力场中轴向槽道热管的传热实验研究[D].济南:山东大学, 2005.QU Y. Experimental study on heat transfer of trapezoidal axial grooved heat pipe[D]. Jinan:Shandong University, 2005.
    [8]王乃华, JOSEPH B,程林,等.阿尔法磁谱仪低温冷却器热控制系统设计及实验[J].科学通报, 2013, 58(5/6):490-494.WANG N H, JOSEPH B, CHENG L, et al. Design and experimental study of thermal control system for AMS cryocoolers[J]. Chin. Sci.Bull., 2013, 58(5/6):490-494.
    [9]张添,王仕越,芮骥才,等.不同工质下带蒸汽腔的Ω形微通道热沉特性[J].化工进展, 2018, 37(8):2954-2961.ZHANG T, WANG S Y, RUI J C, et al. Characteristic of anΩ-shape microchannel heatsink with different working fluid[J]. Chemical Industry and Engineering Progress, 2018, 37(8):2954-2961.
    [10]陶汉中,张红,庄骏.槽道吸液芯热管的研究进展[J].化工进展,2010, 29(3):403-412.TAO H Z, ZHANG H, ZHUANG J. Progress in the theoretical study on miniature axial grooved heat pipe[J]. Chemical Industry and Engineering Progress, 2010, 29(3):403-412.
    [11]王杰,王茜.热管科学及吸液芯研究进展回顾与展望[J].化工进展,2015, 34(4):891-902.WANG J, WANG Q. Development and expectation of heat-pipe technology and wick research[J]. Chemical Industry and Engineering Progress, 2015, 34(4):891-902.
    [12]张程宾,施明恒,陈永平,等.“Ω”形轴向槽道热管的流动和传热特性[J].化工学报, 2008, 59(3):544-550.ZHANG C B, SHI M H, CHEN Y P, et al. Flow and heat transfer characteristics of heat pipe with axial“Ω”-shaped grooves[J]. Journal of Chemical Industry&Engineering, 2008, 59(3):544-550.
    [13]姚峰,陈永平,张程宾,等.Ω形轴向槽道热管的启动特性[J].工程热物理学报, 2011, 32(12):2117-2119.YAO F, CHEN Y P, ZHANG C B, et al. Startup characteristics of heat pipe with axially“Ω”-shaped grooves[J]. Journal of Engineering Thermophysics, 2011, 32(12):2117-2119.
    [14]杨开敏.轴向槽道热管传热机理分析与实验研究[D].济南:山东大学, 2013.YANG K M. Mechanism analysis and experimental study of heat transfer in axial grooved heat pipes[D]. Jinan:Shandong University,2013.
    [15]丁汀,郭林,苗建印,等.空间热管技术发展现状及未来趋势[C]//第十三届全国热管会议,上海,2012:1-7.DING D, GUO L, MIAO J Y, et al. Development status and future trends of space heat pipe technology[C]//13th National Heat Pipe Conference, Shanghai, 2012:1-7.
    [16]崔丽萍,丁汀,李国广,等.乙烷槽道深冷热管性能试验研究[C]//第十三届全国热管会议,上海, 2012:1-6.CUI L P, DING D, LING G G, et al. Experimental study on performance of ethane grooved heat pipe[C]//13th National Heat Pipe Conference, Shanghai, 2012:1-6.
    [17]刘恩光,牟永斌,陆燕,等.乙烷槽道低温热管冷量传输性能及启动特性试验研究[J].低温工程, 2017(6):46-49.LIU E G, MOU Y B, LU Y, et al. Experiment investigation on heat transfer performance of ethane grooved heat pipe[J]. Cryogenics, 2017(6):46-49.
    [18]张利红,梁惊涛,巨永林,等.液氮温区小型轴向槽道热管的实验研究[J].真空与低温, 2003, 9(3):163-166.ZHANG L H, LIANG J T, JU Y L, et al. Experimental studies of the smallaxially grooved heat pipe working at the liquid nitrogen temperature[J]. Vacuum&Cryogenics, 2003, 9(3):163-166.
    [19] ANTONIUK D, POHNER J. Development of an oxygen axial groove heat pipe for a microgravity flight experiment[C]//Thermophysics Conference. US Honolulu, 2013:A91-43423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700