用户名: 密码: 验证码:
选择催化还原(SCR)反应机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in the mechanism of selective catalytic reduction (SCR) reaction
  • 作者:张道军 ; 马子然 ; 孙琦 ; 徐文强 ; 李永龙 ; 竹涛 ; 王宝冬
  • 英文作者:ZHANG Daojun;MA Ziran;SUN Qi;XU Wenqiang;LI Yonglong;ZHU Tao;WANG Baodong;State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology;National Institute of Clean-and-Low-Carbon Energy;School of Chemical &Environmental Engineering,China University of Mining & Technology Beijing;
  • 关键词:选择催化还原 ; 催化剂 ; 氨气 ; 氮氧化物 ; 吸附 ; 活化 ; 活性
  • 英文关键词:selective catalytic reduction(SCR);;catalyst;;ammonia;;nitrogen oxides;;adsorption;;activation;;reactivity
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:北京化工大学化工资源有效利用国家重点实验室;北京低碳清洁能源研究所;中国矿业大学(北京)化学与环境工程学院;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:中组部青年千人启动经费-洁净煤(燃煤电厂)污染物控制(GB9300120001);; 北京低碳清洁能源研究所科技项目(CF9300171821)
  • 语种:中文;
  • 页:HGJZ201904002
  • 页数:13
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:22-34
摘要
简述了NH_3和NO在催化剂表面吸附、转化活化和反应历程及H_2O和SO_2对以上反应行为的影响。分析表明,NH_3氧化脱氢进而与NO反应是决定NH_3反应性和最终产物的关键。NO以气态(Eley-Rideal机理)或硝基类物质等吸附态(Langmuir-Hinshelwood机理)形式参与选择催化还原(SCR)反应。提高催化剂酸性和氧化还原循环性能,利于NH_3和NO吸附和转化及相互间反应。高温时,H_2O影响轻微,而SO_2增强催化剂酸性,提高脱硝活性。低温时,H_2O和SO_2抑制NO吸附和转化活化,导致硫铵盐累积和活性位转变为硫酸盐使催化剂失活。因此,提高抗H_2O、抗SO_2性能是低温脱硝催化剂研发的重要方向。而发展在线升温等再生工艺以解决硝酸盐或含硫化合物导致的失活问题,对保障低温脱硝系统长期稳定运行具有重要意义。
        In this work, adsorption, activation, and reactivity of NH_3 and NO on the selective catalytic reduction(SCR) catalysts and the effects of H_2 O and SO_2 on the reaction behaviors of NH_3 and NO were reviewed. The analysis shows that the co-reaction between the H-abstraction products of the adsorbed NH_3 and the adsorbed NO species(or gas phase NO) is the key to determine the NH_3 reactivity and the final SCR product. The gas phase NO could react with the H-abstraction products of the adsorbed NH_3 directly(Eley-Rideal mechanism). In addition, a lot of conversion products, such as nitrites and nitrates species, could form after NO was adsorbed and activated on the catalyst surface. These species could also react with adsorbed NH_3 species(Langmuir-Hinshelwood mechanism). This is another important pathway for NO to participate in the SCR reaction, especially at low temperature. It is beneficial for the adsorption and conversion of NH_3 and NO to enhance the catalyst acidity and redox ability. The effects of H_2 O and SO_2 on the catalyst are influenced by the temperature. At high temperature, the effect of H_2 O on the catalyst is very little, while the catalyst acidity could be enhanced by SO_2, which enhance NH_3 adsorption.At low temperature, however, the adsorption and conversion of NO could be inhibited severely by H_2 O and SO_2, especially the SO_2. The accumulation of ammonia sulphate and the conversion of active sites to sulphate could result in severe deactivation of the catalyst. Therefore, it is still a severe challenge to improve the H_2 O and SO_2 resistance ability for developing low temperature SCR catalyst. It is of great significance to increase the catalyst temperature to decompose the nitrate and sulfate to regenerate the catalyst in operation.
引文
[1] LIU Y, ZHAO J, LEE J. Conventional and new materials for selective catalytic reduction(SCR)of NOx[J]. Chem. Cat. Chem., 2018, 10(7):1499-1511.
    [2] GAN L, LEI S, YU J, et al. Development of highly active coated monolith SCR catalyst with strong abrasion resistance for lowtemperature application[J]. Frontiers of Environmental Science&Engineering, 2015, 9(6):979-987.
    [3] ZHU M, LAI J, WACHS I. Formation of N2O greenhouse gas during SCR of NO with NH3by supported vanadium oxide catalysts[J].Applied Catalysis B:Environmental, 2018, 224:836-840.
    [4] ARFAOUI J, GHORBEL A, PETITTO C, et al. Novel V2O5-CeO2-TiO2-SO42-nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3in excess O2[J]. Applied Catalysis B:Environmental, 2018, 224:264-275.
    [5]曲瑞阳.新型宽温度窗口催化剂选择性催化还原NOx的机理研究[D].杭州:浙江大学, 2017.QU R Y. Study on the mechanism of novel SCR catalysts with broad temperature window[D]. Hangzhou:Zhejiang University, 2017.
    [6]高凤雨. Mn基低温NH3-SCR催化剂的抗水抗硫性能及反应机理研究[D].北京:北京科技大学, 2017.GAO F Y. Study on the H2O and SO2resistance ability and reaction mechanism of Mn based low temperature NH3-SCR catalyst[D].Beijing:University of Science&Technology Beijing, 2017.
    [7] BUSCA G, SAUSSEY H, SAUR O, et al. FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations[J].Applied Catalysis, 1985, 14:245-260.
    [8] RAMIS G, BUSCA G, LORENZELLI V, et al. Fourier transform infrared study of the adsorption and coadsorption of nitric oxide,nitrogen dioxide and ammonia on TiO2anatase[J]. Applied Catalysis,1990, 64:243-257.
    [9] TOPS?E N Y, DUMESIC J A, TOPS?E H. Vanadia/titania catalysts for selective catalytic reduction of nitric oxide by ammonia:Ⅱ. Studies of active sites and formulation of catalytic cycles[J]. Journal of Catalysis, 1995, 151(1):241-252.
    [10] ZHU M, LAI J K, TUMULURI U, et al. Nature of active sites and surface intermediates during SCR of NO with NH3by supported V2O5-WO3/TiO2catalysts[J]. Journal of the American Chemical Society,2017, 139(44):15624-15627.
    [11] LIU Q, LIU Z, LI C. Adsorption and activation of NH3during selective catalytic reduction of NO by NH3[J]. Chinese Journal of Catalysis,2006, 27(7):636-646.
    [12] ZHANG Q, FAN J, NING P, et al. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst[J].Applied Surface Science, 2018, 435:1037-1045.
    [13] ZHA K, CAI S, HU H, et al. In situ DRIFTs investigation of promotional effects of tungsten on MnOx-CeO2/meso-TiO2catalysts for NOx reduction[J]. Journal of Physical Chemistry C, 2017, 121(45):25243-25254.
    [14] ZHANG L, SUN J, XIONG Y, et al. Catalytic performance of highly dispersed WO3loaded on CeO2in the selective catalytic reduction of NO by NH3[J]. Chinese Journal of Catalysis, 2017, 38(10):1749-1758.
    [15] PENG Y, LI K, LI J. Identification of the active sites on CeO2-WO3catalysts for SCR of NOx with NH3:an in situ IR and Raman spectroscopy study[J]. Applied Catalysis B:Environmental, 2013, 140-141(2):483-492.
    [16] GAO F, WASHTON N M, WANG Y, et al. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts:implications for the active Cu species and the roles of Br?nsted acidity[J]. Journal of Catalysis, 2015, 331:25-38.
    [17] PE?A D A, UPHADE B S, REDDY E P, et al. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts[J]. Journal of Physical Chemistry B,2004, 108(28):9927-9936.
    [18] LIU F, HE H, ZHANG C, et al. Mechanism of the selective catalytic reduction of NOx with NH3over environmental-friendly iron titanate catalyst[J]. Catalysis Today, 2011, 175(1):18-25.
    [19] KIJLSTRA W S, BRANDS D S, SMIT H I, et al. Mechanism of the selective catalytic reduction of NO with NH3over MnOx/Al2O3:Ⅱ.Reactivity of adsorbed NH3and NO complexes[J]. Journal of Catalysis,1997, 171(1):219-230.
    [20] KIJLSTRA W S, BRANDS D S, POELS E K, et al. Mechanism of the selective catalytic reduction of NO by NH3over MnOx/Al2O3:Ⅱ.Adsorption and desorption of the single reaction components[J].Journal of Catalysis, 1997, 171(1):208-218.
    [21] TOPS?E N Y, TOPS?E H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction(SCR)of nitric-oxide by ammonia:Ⅱ.Combined temperature-programmed in-situ FTIR and on-line mass spectroscopy studies[J]. Journal of Catalysis, 1995, 151(1):226-240.
    [22] SCHNEIDER H, TSCHUDIN S, SCHNEIDER M, et al. In situ diffuse reflectance FTIR study of the selective catalytic reduction of NO by NH3over vanadia-titania aerogels[J]. Journal of Catalysis, 1994,147(1):5-14.
    [23] RAMIS G, BUSCA G, BREGANI F, et al. Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction[J]. Applied Catalysis, 1990, 64(1/2):259-278.
    [24] ZHU M, LAI J K, TUMULURI U, et al. Reaction pathways and kinetics for selective catalytic reduction(SCR)of acidic NOx emissions from power plants with NH3[J]. ACS Catalysis, 2017, 7(12):8358-8361.
    [25] LIETTI L, SVACHULA J, FORZATTI P, et al. Surface and catalytic properties of vanadia-titania and tungsta-titania systems in the selective catalytic reduction of nitrogen oxides[J]. Catalysis Today,1993, 17(1/2):131-140.
    [26] RAMIS G, YI L, BUSCA G, et al. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. Journal of Catalysis, 1995, 157(2):523-535.
    [27]刘清雅.蜂窝状堇青石基Cu-Al2O3催化剂的制备及其烟气脱硫脱硝的研究[D].太原:中国科学院山西煤炭化学研究所,2004.LIU Q Y. Study on the preparation of honeycomb cordierite based CuAl2O3catalyst and its application in flue gas desulfurization and denitrification[D]. Taiyuan:Shanxi Institute of Coal Chemistry,Chinese Academy of Sciences, 2004.
    [28] QI G, YANG R T. Characterization and FTIR studies of MnOx-CeO2catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. Journal of Physical Chemistry B, 2004, 108(40):15738-15747.
    [29] QI G, YANG R T, CHANG R. MnOx-CeO mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3at low temperatures[J]. Applied Catalysis B:Environmental, 2004, 51(2):93-106.
    [30] LIU F, SHAN W, LIAN Z, et al. Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx[J].Catalysis Science&Technology, 2013, 3(10):2699-2707.
    [31] LIU F, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. Journal of Physical Chemistry C, 2010, 114(40):16929-16936.
    [32] MARBáN G, FUERTES A B. Kinetics of the low-temperature selective catalytic reduction of NO with NH3over activated carbon fiber composite-supported iron oxides[J]. Catalysis Letters, 2002, 84(1-2):13-19.
    [33] LONG R Q, YANG R T. FTIR and kinetic studies of the mechanism of Fe3+-exchanged TiO2-pillared clay catalyst for selective catalytic reduction of NO with ammonia[J]. Journal of Catalysis, 2000, 190(1):22-31.
    [34] CHEN T, GUAN B, LIN H, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chinese Journal of Catalysis, 2014, 35(3):294-301.
    [35] JIANG B, LI Z, LEE S C. Mechanism study of the promotional effect of O2on low-temperature SCR reaction on Fe-Mn/TiO2by DRIFT[J].Chemical Engineering Journal, 2013, 225(3):52-58.
    [36] CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V?O?-WO?/TiO?catalysts on selective catalytic reduction of NOx by NH?[J]. Chemical Engineering Journal, 2011, 170(2-3):531-537.
    [37] LI X, LI X, YANG R T, et al. The poisoning effects of calcium on V2O5-WO3/TiO2catalyst for the SCR reaction:comparison of different forms of calcium[J]. Molecular Catalysis, 2017, 434:16-24.
    [38] LI X, LI X, LI J, et al. High calcium resistance of CeO2-WO3SCR catalysts:structure investigation and deactivation analysis[J]. Chemical Engineering Journal, 2017, 317:70-79.
    [39] GU T, JIN R, LIU Y, et al. Promoting effect of calcium doping on the performances of MnOx/TiO2catalysts for NO reduction with NH3at low temperature[J]. Applied Catalysis B:Environmental, 2013, 129(3):30-38.
    [40] SUN W, LI X, ZHAO Q, et al. Fe-Mn mixed oxide catalysts synthesized by one-step urea-precipitation method for the selective catalytic reduction of NOx with NH3at low temperatures[J]. Catalysis Letters, 2018, 148(1):227-234.
    [41] KOEBEL M, ELSENER M, Madia G. Reaction pathways in the selective catalytic reduction process with NO and NO2at low temperatures[J]. Industrial&Engineering Chemistry Research, 2001,40(1):52-59.
    [42] IWASAKI M, SHINJOH H. A comparative study of“standard”,“fast”and“NO2”SCR reactions over Fe/zeolite catalyst[J]. Applied Catalysis A:General, 2010, 390(1):71-77.
    [43] NOVA I, CIARDELLI C, TRONCONI E, et al. NH3-NO/NO2chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction[J]. Catalysis Today, 2006, 114(1):3-12.
    [44] RUGGERI M P, GROSSALE A, NOVA I, et al. FTIR in situ mechanistic study of the NH3, NO/NO2,“fast SCR”reaction over a commercial Fe-ZSM-5 catalyst[J]. Catalysis Today, 2012, 184(1):107-114.
    [45] LONG R Q, YANG R T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of the American Chemical Society, 1999, 121(23):5595-5596.
    [46] LONG R Q, YANG R T. The promoting role of rare earth oxides on Feexchanged TiO2-pillared clay for selective catalytic reduction of nitric oxide by ammonia[J]. Applied Catalysis B:Environmental, 2000, 27(2):87-95.
    [47] FORZATTI P, NOVA I, TRONCONI E. Enhanced NH3selective catalytic reduction for NOx abatement[J]. Angewandte Chemie International Edition, 2009, 121(44):8516-8518.
    [48] LI W, ZHANG C, LI X, et al. Ho-modified Mn-Ce/TiO2for lowtemperature SCR of NOx with NH3:evaluation and characterization[J].Chinese Journal of Catalysis, 2018, 39(10):1653-1663.
    [49] SHEN B, LIU T, ZHAO N, et al. Iron-doped Mn-Ce/TiO2catalyst for low temperature selective catalytic reduction of NO with NH3[J].Journal of Environmental Sciences, 2010, 22(9):1447-1454.
    [50] LIU Z, YANG Y, ZHANG S, et al. Selective catalytic reduction of NOx with NH3over Mn-Ce mixed oxide catalyst at low temperatures[J].Catalysis Today, 2013, 216:76-81.
    [51] BONINGARIT,ETTIREDDYPR,SOMOGYVARIA,etal.Influenceof elevatedsurfacetexturehydratedtitaniaonCe-dopedMn/TiO2catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J].Journal of Catalysis, 2015, 325:145-155.
    [52]刘建东,黄张根,李哲,等. Ce对Mn/TiO2/堇青石整体低温脱硝选择性催化还原催化剂的改性[J].高等学校化学学报,2014,35(3):589-595.LIU Jiandong, HUANG Zhanggen, LI Zhe, et al. Ce modification on Mn/TiO2/cordieritemonolithiccatalystforlow-temperatureNOxreduction[J]. Chemical Journal of Chinese Universities, 2014, 35(3):589-595.
    [53] SVACHULA J, FERLAZZO N, FORZATTI P, et al. Selective reduction of NOx by ammonia over honeycomb DeNOxing catalysts[J].Industrial&Engineering Chemistry Research, 1993, 32(6):1053-1060.
    [54] TURCO M, LISI L, PIRONE R, et al. Effect of water on the kinetics of nitric oxide reduction over a high-surface-area V2O5/TiO2catalyst[J].Applied Catalysis B:Environmental, 1994, 3(2/3):133-149.
    [55] AMIRIDIS M D, WACHS I E, DEO G, et al. Reactivity of V2O5catalysts for the selective catalytic reduction of NO by NH3:influence of vanadia loading, H2O, and SO2[J]. Journal of Catalysis, 1996, 161(1):247-253.
    [56] WU S, LI H, LI L, et al. Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2-TiO2catalyst[J].Fuel, 2015, 159:876-882.
    [57] LIU F, HE H. Selective catalytic reduction of NO with NH3over manganese substituted iron titanate catalyst:reaction mechanism and H2O/SO2inhibition mechanism study[J]. Catalysis Today, 2010, 153(3):70-76.
    [58] PAN S, LUO H, LI L, et al. H2O and SO2deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3[J]. Journal of Molecular Catalysis A:Chemical, 2013, 377:154-161.
    [59] YOUN S, SONG I, LEE H, et al. Effect of pore structure of TiO2on the SO2poisoning over V2O5/TiO2catalysts for selective catalytic reduction of NOx with NH3[J]. Catalysis Today, 2018, 303:19-24.
    [60] TOPS?E N Y, SLABIAK T, CLAUSEN B S, et al. Influence of water on the reactivity of vanadia-titania for catalytic reduction of NOx[J].Journal of Catalysis, 1992, 134:742-746.
    [61]张道军,马子然,孙琦,等.硫酸氢铵在钒基选择性催化还原催化剂表面的生成、作用及防治[J].化工进展, 2018, 37(7):2635-2643.ZHANG Daojun, MA Ziran, SUN Qi, et al. Formation mechanism,effects and prevention of NH4HSO4formed on the surface of V2O5based catalysts[J]. Chemical Industry and Engineering Progress, 2018,37(7):2635-2643.
    [62] ZHANG L, WANG D, LIU Y, et al. SO2poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J].Applied Catalysis B:Environmental, 2014, 156/157(9):371-377.
    [63] GUO X, BARTHOLOMEW C, HECKER W, et al. Effects of sulfate species on V2O5/TiO2SCR catalysts in coal and biomass-fired systems[J]. Applied Catalysis B:Environmental, 2009, 92(1):30-40.
    [64] YANG S, GUO Y, CHANG H, et al. Novel effect of SO2on the SCR reaction over CeO2:mechanism and significance[J]. Applied Catalysis B:Environmental, 2013, 136/137(12):19-28.
    [65] YAN Q, CHEN S, ZHANG C, et al. Synthesis and catalytic performance of Cu1Mn0.5Ti0.5Ox mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2resistance[J]. Applied Catalysis B:Environmental, 2018, 238:236-247.
    [66] LIU F, ASAKURA K, He H, et al. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B:Environmental, 2011, 103(3):369-377.
    [67] WIJAYANTI K, LEISTNER K, CHAND S, et al. Deactivation of Cu-SSZ-13 by SO2exposure under SCR conditions[J]. Catalysis Science&Technology, 2015, 2016, 6(8):2565-2579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700