用户名: 密码: 验证码:
低透气性煤层水力压裂增透数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on numerical simulation of hydraulic fracturing permeability-enhancement for low-permeability coal seam
  • 作者:何福胜 ; 毕建乙 ; 王海东
  • 英文作者:He Fusheng;Bi Jianyi;Wang Haidong;Xiegou Coal Mine of Shanxi Xishan Jinxing Energy Co.,Ltd.;Safety Engineering College,North China Institute of Science and Technology;
  • 关键词:低透气性 ; 裂隙裂纹 ; 水力压裂 ; 卸压增透 ; 剪应力 ; 数值模拟
  • 英文关键词:low permeability;;fissure cracks;;hydraulic fracturing;;pressure-relief and permeability-enhancement;;shear stress;;numerical simulation
  • 中文刊名:ZGME
  • 英文刊名:China Coal
  • 机构:山西西山晋兴能源有限责任公司斜沟煤矿;华北科技学院安全工程学院;
  • 出版日期:2018-10-22
  • 出版单位:中国煤炭
  • 年:2018
  • 期:v.44;No.507
  • 基金:国家自然科学基金资助项目(50704024)
  • 语种:中文;
  • 页:ZGME201810033
  • 页数:8
  • CN:10
  • ISSN:11-3621/TD
  • 分类号:139-145+176
摘要
针对高瓦斯低透气性煤层抽采率低下、钻孔工程量大及抽采周期长的难题,提出水力压裂卸压增透技术。借助RFPA2D-Flow软件模拟分析了压裂时压裂孔附近煤体从发生破裂、裂隙裂纹的生成演化、扩展延伸到最终贯通的完整过程,得到钻孔附近煤体的裂隙裂纹演化规律。通过在斜沟煤矿18205材料巷实施水力压裂现场试验,发现当水压升高至16MPa时有效影响半径为7m,试验结果与模拟结果基本一致;水力压裂影响范围内煤层的透气性系数提升14倍,瓦斯抽采浓度提高了4.43倍,抽采纯量提升了9.62倍,抽采效果显著提高。
        In order to solve the problems of low drainage rate,high drilling volume and long drainage cycle in high-gas and low-permeability coal seams,hydraulic fracturing pressure-relief and permeability-enhancement technology was proposed.The RFPA2 D-Flow software was used to simulate and analyze the complete process of coal fracture and fissure generation,revolution,extension and cut-through around borehole,and the revolution law of cracks and fissures in coal body around borehole was obtained.Through hydraulic fracturing site test in 18205 roadway in Xiegou Coal Mine,it found that when the water pressure rose to 16 MPa,the effective influencing radius was 7 m,the test results was basically the same with the simulation results;the permeability coefficient of the coal seam within the influence range of hydraulic fracturing was increased by 14 times,and the gas drainage concentration was increased by 4.43 times,and the drainage quantity was increased by 9.62 times.The effect of gas drainage was significantly improved.
引文
[1]袁亮,林柏泉,杨威.我国煤矿水力化技术瓦斯治理研究进展及发展方向[J].煤炭科学技术,2015(1)
    [2]王耀锋,何学秋,王恩元等.水力化煤层增透技术研究进展及发展趋势[J].煤炭学报,2014(10)
    [3]周红星,程远平.突出煤层穿层钻孔孔群增透技术及应用[J].煤炭学报,2011(9)
    [4]郭臣业,沈大富,张翠兰等.煤矿井下控制水力压裂煤层增透关键技术及应用[J].煤炭科学技术,2015(2)
    [5]王海东.突出煤层掘进工作面CO2可控相变致裂防突技术[J].煤炭科学技术,2016(3)
    [6]周西华,毕建乙,王海东等.高瓦斯低透气性煤层水力压裂增透技术研究[J].世界科技研究与发展,2015(3)
    [7]康红普,冯彦军.定向水力压裂工作面煤体应力监测及其演化规律[J].煤炭学报,2012(12)
    [8]刘军.马堡矿水力压裂增透技术及其应用研究[D].辽宁工程技术大学,2015
    [9]康红普,冯彦军.煤矿井下水力压裂技术及在围岩控制中的应用[J].煤炭科学技术,2017(1)
    [10]吴拥政,康红普.煤柱留巷定向水力压裂卸压机理及试验[J].煤炭学报,2017(5)
    [11]梁文勖,李江涛,马文伟等.点式水力压裂装置的试验研究与应用[J].煤炭科学技术,2017(4)
    [12]翟成,李贤忠,李全贵.煤层脉动水力压裂卸压增透技术研究与应用[J].煤炭学报,2011(12)
    [13]孙炳兴,王兆丰,伍厚荣.水力压裂增透技术在瓦斯抽采中的应用[J].煤炭科学技术,2010(11)
    [14]富向.井下点式水力压裂增透技术研究[J].煤炭学报,2011(8)
    [15]冯彦军,康红普.定向水力压裂控制煤矿坚硬难垮顶板试验[J].岩石力学与工程学报,2012(6)
    [16]张俭.碎软低透突出煤层定向长钻孔整体水力压裂高效增透技术[J].中国煤炭,2018(7)
    [17]许江,马天宇,彭守建等.煤岩体水力压裂动态演化物理模拟试验研究[J].煤炭科学技术,2017(6)
    [18]石欣雨,文国军,白江浩等.煤岩水力压裂裂缝扩展物理模拟实验[J].煤炭学报,2016(5)
    [19]李丹琼,张遂安,张士诚.煤层气水平井穿层压裂裂缝扩展机理[J].煤炭科学技术,2016(5)
    [20]朱红青,张民波,申健等.低透气性煤层脉动注水增透机理研究及数值分析[J].煤炭学报,2013(a02)
    [21]PANG Yihui,Wang Guofa,Ding Ziwei,et al.Mechanical model of water in-rush from c:oal seam floor based on triaxial seepage experiments[J].lnternational Journal of Coal Science&Technology,2014(4)
    [22]王耀锋,李艳增.预置导向槽定向水力压穿增透技术及应用[J].煤炭学报,2012(8)
    [23]郭峰.低透气突出煤层水力压裂增透技术应用研究[J].中国煤炭,2011(2)
    [24]蔺海晓,杜春志.煤岩拟三轴水力压裂实验研究[J].煤炭学报,2011(11)
    [25]倪小明,林然,张崇崇.晋城矿区煤层气井连续多次压裂裂缝展布特征[J].中国矿业大学学报,2013(5)
    [26]冯彦军,康红普.受压脆性岩石Ⅰ-Ⅱ型复合裂纹水力压裂研究[J].煤炭学报,2013(2)
    [27]黄炳香,程庆迎,刘长友等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011(2)
    [28]杨宏伟.低透气性煤层井下分段点式水力压裂增透[J].北京科技大学学报,2012(11)
    [29]林柏泉,李子文,翟成等.高压脉动水力压裂卸压增透技术及应用[J].采矿与安全工程学报,2011(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700