用户名: 密码: 验证码:
路用多孔页岩陶粒表面修饰优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Surface Modification of Porous Expanded Shale
  • 作者:王朝辉 ; 刘鲁清 ; 韩晓霞 ; 李天宇 ; 韩继国
  • 英文作者:WANG Chao-hui;LIU Lu-qing;HAN Xiao-xia;LI Tian-yu;HAN Ji-guo;School of Highway, Chang'an University;Tianjin Municipal Engineering Design and Research Institute;China Academy of Transportation Sciences;
  • 关键词:道路工程 ; 页岩陶粒 ; 表面修饰 ; 多孔岩陶粒 ; 优化 ; 性能
  • 英文关键词:road engineering;;expanded shale;;surface modification;;porous expended shale;;optimization;;performance
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:长安大学公路学院;天津市市政工程设计研究院;交通运输部科学研究院;
  • 出版日期:2019-04-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.188
  • 基金:交通运输部建设科技项目(201331849A270);; 陕西省自然科学基础研究计划项目(2014JM2-5045);; 天津市城乡建设委员会科学技术发展计划项目(2014-15);; 中央高校基本科研业务费专项资金项目(300102218210,300102219314)
  • 语种:中文;
  • 页:ZGGL201904018
  • 页数:11
  • CN:04
  • ISSN:61-1313/U
  • 分类号:200-210
摘要
为提高路用多孔页岩陶粒的路用性能并提升其阻热性能,优选3种有机处理剂,借助吸水率、筒压强度、控制筛孔通过率及磨耗值试验,确定了不同处理剂最佳修饰工艺;基于吸油率、表面孔隙封堵率与SEM试验,系统研究了修饰前后页岩陶粒表面孔隙封堵情况,对比评价了不同处理剂对页岩陶粒路用性能的影响规律,确定了页岩陶粒最佳处理剂;并在此基础上,全面评价了表面修饰对页岩陶粒混合料路用性能的影响。结果表明:苯基硅树脂的适宜浓度为25%,固化温度为160℃,硅丙乳液的适宜浓度为35%,成膜温度为30℃,助剂含量为3%,建筑防水剂修饰页岩陶粒的适宜浓度为35%,固化温度为85℃;其中苯基硅树脂对页岩陶粒表面封装效果最好,24 h吸油率最低,表面孔隙封堵率高达78%,且SEM图像也表明经表面修饰的页岩陶粒表面开口孔隙数量明显减少;3种处理剂均能不同程度地提高路用多孔页岩陶粒的路用性能,24 h吸水率的降幅在80.48%~94.5%之间,压碎值降幅在4.62%~17.52%之间,磨耗值降幅在5.33%~30.92%之间,黏附性等级提高0.5~2级;苯基硅树脂对页岩陶粒吸水率与黏附性等级改善效果最佳,硅丙乳液对压碎值与磨耗值改善效果最为明显,综合考虑所有评价指标,确定了页岩陶粒最佳处理剂为苯基硅树脂;且经苯基硅树脂表面修饰后的页岩陶粒混合料各项路用性能均有不同程度提高。
        In order to improve the road performance and promote the heat resistance of porous expanded shale, and optimization of three organic treatment agents, the best modification process of different treatment agents was determined through water absorption, cylindrical compress strength, control mesh pass rate, and abrasion value. Based on the oil absorption, surface pore blocking rate, and scanning electron microscopy(SEM) test, the pore blocking conditions on the surface of expanded shale before and after modification were systematically studied; the effects of different treatment agents on road performance of expanded shale were compared and evaluated; and the best treatment agent for expanded shale was determined. On this basis, the road performance of expanded shale mixture before and after modification was evaluated in detail. The results showed that, the suitable concentration of phenyl silicone resin for expanded shale is 25%, with curing temperature of 160 °C, the suitable concentration of silicone-acrylate emulsion is 35%, with curing temperature of 30 °C, the content of auxiliaries is 3%, and the suitable concentration of building waterproofing agent is 35% with curing temperature of 85 °C. Phenyl silicone resin has the best encapsulation effect on the surface of expanded shale, along with the lowest oil absorption rate in 24 h and surface pore blocking rate as high as 78%. The SEM images show that the number of open pores on the surface of treated expanded shale was significantly reduced. The three treatment agents can improve the road performance of expanded shale in different degrees. The decreased water absorption rate in 24 h ranged between 80.48% and 94.5%. The decrease in crushing value ranged between 4.62% and 17.52%. The decrease in abrasion value ranged between 5.33% and 30.92%, and adhesional degree increased by 0.5-2. Phenyl silicone resin has the best effect on improving the water absorption rate and adhesional degree of expanded shale particles. Silicone-acrylate emulsion has the most obvious effect on improving the crushing value and abrasion value. The best treatment agent was determined to be phenyl silicone resin. The road performance of expanded shale mixtures modified by phenyl silicone resin has been improved in different extents.
引文
[1] 孙晓龙,王朝辉,张洪华,等.负重轮碾压的路用降温涂层高温稳定性能[J].长安大学学报:自然科学版,2016,36(4):18-25.SUN Xiao-long,WANG Chao-hui,ZHANG Hong-hua,et al.High Temperature Stability Performance of Asphalt Road Cooling Coatings Based on Road Wheel Tracking Test [J].Journal of Chang’an University:Natural Science Edition,2016,36 (4):18-25.
    [2] 王朝辉,王玉飞,孙晓龙,等.基于能量转换的路用降温涂层材料制备与性能[J].中国公路学报,2015,28(8):14-21.WANG Chao-hui,WANG Yu-fei,SUN Xiao-long,et al.Preparation and Property of Road Cooling Coating Material Based on Energy Conversion [J].China Journal of Highway and Transport,2015,28 (8):14-21.
    [3] 王振军,王宇,蒋玮,等.多孔集料沥青基复合材料的隔热功能[J].功能材料,2011,42(5):827-830.WANG Zhen-jun,WANG Yu,JIANG Wei,et al.Insulating Function of Asphalt-based Composites with Porous Aggregate [J].Journal of Functional Materials,2011,42 (5):827-830.
    [4] 王朝辉,殷卫永,孙晓龙,等.环保型降温微表处制备及其功效[J].中国公路学报,2017,30(7):9-17.WANG Chao-hui,YIN Wei-yong,SUN Xiao-long.Preparation and Effect of Environment-friendly Cooling Micro-surfacing [J].China Journal of Highway and Transport,2017,30 (7):9-17.
    [5] 贾冠华,刘鹏,李珠.气凝胶/膨胀珍珠岩的制备及其微观特征对导热性能的影响[J].硅酸盐通报,2018,37(3):1039-1046.JIA Guan-hua,LIU Peng,LI Zhu.Preparation of Aerogel/Expanded Perlite and Effect of Its Microstructure on Thermal Conductivity [J].Bulletin of the Chinese Ceramic Society,2018,37 (3):1039-1046.
    [6] 钱振东,孟凡奇,杨理广.利用陶瓷废料的沥青混合料路用性能及隔热性能[J].公路交通科技,2015,32(5):19-24.QIAN Zhen-dong,MENG Fan-qi,YANG Li-guang.Road Performance and Thermal Insulation Performance of Asphalt Mixture Containing Ceramic Waste [J].Journal of Highway and Transportation Research and Development,2015,32 (5):19-24.
    [7] SILVESTRE R,MEDEL E,GARCIA A,et al.Using Ceramic Wastes From Tile Industry as a Partial Substitute of Natural Aggregates in Hot Mix Asphalt Binder Courses [J].Construction & Building Materials,2013,45 (2):115-122.
    [8] FENG D,YI J,WANG D.Performance and Thermal Evaluation of Incorporating Waste Ceramic Aggregates in Wearing Layer of Asphalt Pavement [J].Journal of Materials in Civil Engineering,2013,25 (7):857-863.
    [9] 张增平,韩继成,南晓粉,等.热阻式沥青路面组成及降温技术研究[J].筑路机械与施工机械化,2016,33(6):75-78.ZHANG Zeng-ping,HAN Ji-cheng,NAN Xiao-fen,et al.Study on Composition and Cooling Technology of Heat Resistant Asphalt Pavement [J].Road Machinery & Construction Mechanization,2016,33 (6):75-78.
    [10] 杨健辉,徐璐,樊晓,等.石轻页岩陶粒混凝土的强度试验研究[J].混凝土,2015(3):82-86.YANG Jian-hui,XU Lu,FAN Xiao,et al.Strength Tests of Shale Ceramsite Concrete with Part Gravel Coarse Aggregates [J].Concrete,2015 (3):82-86.
    [11] 莫奕新,庞建勇,黄金坤.基于灰色关联度的隔热混凝土性能研究[J].科技通报,2018,34(2):111-116.MO Yi-xin,PANG Jian-yong,HUANG Jin-kun.Study on the Performance of Insulation Concrete Based on Grey Relational Grade [J].Bulletin of Science and Technology,2018,34 (2):111-116.
    [12] 雷雨滋,郑南翔,纪小平.热阻沥青混合料的降温效果及路用性能评价[J].武汉理工大学学报,2013,35(11):68-72.LEI Yu-zi,ZHENG Nan-xiang,JI Xiao-ping.Evaluation on Temperature Reduction and Road Performances of Thermal Resistance Asphalt Mixture [J].Journal of Wuhan University of Technology,2013,35 (11):68-72.
    [13] 邹玲,郑南翔,纪小平.热阻沥青混合料薄层罩面阻热性能研究[J].武汉理工大学学报,2014,36(6):41-46.ZOU Ling,ZHENG Nan-xiang,JI Xiao-ping.Study on Thermal Resistance Performance of Thermal Resistance Thin Surface of Asphalt Mixture [J].Journal of Wuhan University of Technology,2014,36 (6):41-46.
    [14] 车天凯,潘宝峰,兰晶晶.陶砂对沥青混合料性能影响的研究[J].新型建筑材料,2017,44(12):52-54.CHE Tian-kai,PAN Bao-feng,LAN Jing-jing.The Research on the Effect of Ceramsite Aggregate on Asphalt Mixture Properties [J].New Building Materials,2017,44 (12):52-54.
    [15] 李克亮,邢朝燕,陈爱玖,等.页岩陶粒泡沫混凝土性能与保温机理研究[J].混凝土,2017(12):75-78.LI Ke-liang,XING Chao-yan ,CHEN Ai-jiu,et al.Research on Properties and Thermal Linsulation Mechanism of Shale Ceram Site Foam Concrete [J].Concrete,2017 (12):75-78.
    [16] 刘喜,吕贝贝,刘全威,等.高强轻骨料陶粒混凝土配合比及强度影响因素试验研究[J].硅酸盐通报,2014,33(4):847-852.LIU Xi,LU Bei-bei,LIU Quan-wei,et al.Mechanical Properties of Lightweight Concrete Under Mix Proportion and Strength Factors [J].Bulletin of the Chinese Ceramic Society,2014,33 (4):847-852.
    [17] 王怀亮,张楠.改性再生骨料对自密实混凝土性能的影响[J].哈尔滨工业大学学报,2016,48(6):150-156.WANG Huai-liang,ZHANG Nan.Assessment of Treated Recycled Concrete Aggregates on the Properties of Recycled-aggregate-self-compacting Concrete [J].Journal of Harbin Institute of Technology,2016,48 (6):150-156.
    [18] MA M,CHEN Q,WANG C H,et al.High-performance Organosilicon-refractory Bauxite:Coating and Fundamental Properties[J].Construction & Building Materials,2019,207:563-571.
    [19] 张晓艳.耐高温有机硅树脂及其固化体系的研究[D].北京:北京航空材料研究院,2000.ZHANG Xiao-yan.The Studies on the High Temperature Resistant Silicone Resins and Their Curing System [D].Beijing:Beijing Aviation Materials Research Institute,2000.
    [20] 罗静.水溶性高分子对硅丙乳液体系流变性能的影响[D].武汉:武汉工业学院,2012.LUO Jing.Influence of Water-soluble Polymer on the Rheological Properties of Silicon-acrylate Emulsion System [D].Wuhan:Wuhan Polytechnic University,2012.
    [21] 毕小云.有机柔性闭孔膨胀珍珠岩保温材料的制备与性能研究[D].武汉:湖北工业大学,2012.BI Xiao-yun.Study on Preparation and Properties of Organic Flexible Closed Pore Expansion Perlite Insulation Materials [D].Wuhan:Hubei University of Technology,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700