用户名: 密码: 验证码:
中药生物质原料与药渣热解特性对比研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:COMPARISON OF PYROLYSIS CHARACTERISTICS BETWEEN FEEDSTOCK AND RESIDUE FOR CHINESE HERB MEDICINE
  • 作者:赵伟 ; 袁洪友 ; 黄艳琴 ; 詹昊 ; 阴秀丽 ; 吴创之
  • 英文作者:Zhao Wei;Yuan Hongyou;Huang Yanqin;Zhan Hao;Yin Xiuli;Wu Chuangzhi;Thermal Science and Energy Engineering,University of Science and Technology of China;Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,CAS Key Laboratory of Renewable Energy,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development;University of Chinese Academy of Sciences;
  • 关键词:生物质 ; 药渣 ; 热解 ; 焦油 ; 半焦
  • 英文关键词:biomass;;herb residue;;pyrolysis;;tar;;char
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:中国科学技术大学热科学和能源工程系;中国科学院广州能源研究所中国科学院可再生能源重点实验室广东省新能源和可再生能源研究开发与应用重点实验室;中国科学院大学;
  • 出版日期:2019-06-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(51661145022;51506206);; 广东省科技计划(2016A010104011)
  • 语种:中文;
  • 页:TYLX201906027
  • 页数:9
  • CN:06
  • ISSN:11-2082/TK
  • 分类号:210-218
摘要
以饮料厂副产物中药渣、单成分中药材及其蒸煮残渣作为研究对象,分析因蒸煮作用导致的燃料理化性质差异,通过热重、管式炉等实验手段以及气相色谱仪、气相色谱-质谱联用仪等测试手段研究中药渣的热解气液固产物特性。结果表明:相比于中药材,药渣的挥发分有所提高,Na、K、Mg、Cl、Si等元素含量降低;基本有机官能团变化不大;蒸煮后,药渣的最大失重速率提高且失重峰向高温区移动,热解残余率降低;相同温度下,热解气热值蒸煮前后(15.04~18.57 MJ/m~3)变化较小,但比麦秆热解气热值(10.63~16.23 MJ/m~3)高;蒸煮后,相同温度下药渣的热解液相产率较高(55.72%~61.92%),而焦油中苯酚的相对含量降低;相同温度下,蒸煮会降低药材的固体产率(27.62%~30.76%),但有利于增加药渣热解半焦比表面积,进而有利于热解半焦的气化反应。
        Based on the by-product from beverage industry,Chinese herbal residues,specific component of Chinese herb medicine and its cooked residue was used to analyze its physical and chemical properties of a solid fuel after cooking. Additionally,the pyrolytic product of raw materials were analyzed by tubular furnace and other experimental methods including GC,TG and GC-MS. The results showed that the volatiles of cooked herb residue increased and the contents of Na,K,Mg,Cl,Si decreased when compared with Chinese herb medicine. The functional groups retained almost unchanged. After cooking process,the maximum weight loss rate of the residue increased and the weight loss peak of cooked residue shifted to the high temperature region,decreasing the pyrolysis residual rate. The heating value of pyrolysis gas produced from either the feedstock or the residue was higher than that of the straw,which was barely influenced by the cooking process. In addition,the pyrolysis yield of herb residue increased while that of phenol decrease after cooking process. Finally,the pyrolysis char yield of herb residue would increase as the presence of cooking process.Meanwhile,the specific surface area of pyrolysis char increased significantly,which was helpful for the enhancement of its gasification reaction.
引文
[1]Zeng Xi,Shao Ruyi,Wang Fang,et al. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresource Technology,2016,206:93—98.
    [2]车德勇,高俊男,李少华,等.生物质与褐煤气化特性及半焦物化特性的演变规律[J].太阳能学报,2015,36(11):2744—2751.[2]Che Deyong, Gao Junnan, Li Shaohua, et al.Investigation on the forming property of chars physicochemical structure during biomass and lignite cogasification[J]. Acta Energiae Solaris Sinica,2015,36(11):2744—2751.
    [3]Fan Shumin,Yuan Xiangzhou,Zhao Liang,et al.Experimental and kinetic study of catalytic steam gasification of low rank coal with an environmentally friendly,inexpensive composite K2CO3-eggshell derived CaO catalyst[J]. Fuel,2016,165:397—404.
    [4]Guo Feiqiang,Dong Yuping,Dong Lei,et al. An innovative example of herb residues recycling by gasification in a fluidized bed[J]. Waste Management,2013,33(4):825—832.
    [5]Dong Li, Xu Guangwen, Suda T, et al. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed[J]. Fuel Processing Technology,2010,91(8):882—888.
    [6]郭飞强,董玉平,董磊,等.三种中药渣的热解气化特性[J].农业工程学报,2011,27(S1):125—128.[6]Guo Feiqiang, Dong Yuping, Dong Lei, et al.Gasification characteristics of three herb residues[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(S1):125—128.
    [7]冼萍,钟莉莹,王孝英.两面针药渣的热解气化利用特性分析[J].可再生能源,2007,25(1):26—28.[7]Xian Ping,Zhong Liying,Wang Xiaoying. The analyses of residue of anthoxylumnitidum decoction as gasification feedstock[J]. Renewable Energy Resources,2007,25(1):26—28.
    [8]Wang Pan,Zhan Sihui,Yu Hongbing,et al. The effects of temperature and catalysts on the pyrolysis of industrial wastes(herb residue)[J]. Bioresource Technology,2010,101(9):3236—3241.
    [9]Guo Feiqiang,Dong Yyuping,Zhang Tonghui,et al.Experimental study on herb residue gasification in an airblown circulating fluidized bed gasifier[J]. Industrial&Engineering Chemistry Research, 2014, 53(34):13264—13273.
    [10]王攀,展思辉,于宏兵,等.废弃中药渣催化热解制取生物油的研究[J].环境污染与防治,2010,32(5):14—18,56.[10]Wang Pan,Zhan Sihui,Yu Hongbing,et al. Study on the catalytic pyrolysis of herb residue bio-oil[J].Environmental Pollution&Control,2010,32(5):14—18,56
    [11]贡丽鹏.土霉素菌渣热解技术的研究[D].石家庄:河北科技大学,2012.[11]Gong Lipeng. Research on pyrolysis technology of terramycin bacterial residue[D]. Shijiazhuang:Hebei University of Science and Technology,2012.
    [12]Balat M,Balat M,K?rtay E,et al. Main routes for the thermo-conversion of biomass into fuels and chemicals.Part 1:Pyrolysis systems[J]. Energy Conversion&Management,2009,50(12):3147—3157.
    [13]Martínez J D,Lora E E S,Andrade R V,et al.Experimental study on biomass gasification in a double air stage downdraft reactor[J]. Biomass&Bioenergy,2011,35(8):3465—3480.
    [14]范晓旭,贤建伟,初雷哲,等.生物质鼓泡流化床和循环流化床气化对比试验[J].农业机械学报,2011,42(4):96—99.[14]Fan Xiaoxu, Xian Jianwei, Chu Leizhe, et al.Comparison of bubbling fluidized bed and circulating fluidized bed in gasification of biomass[J]. Transactions of the Chinese Society of Agricultural Machinery,2011,42(4):96—99.
    [15]Tomita A, Ohtsuka Y. Chapter 5-gasification and combustion of brown coal[J]. Advances in the Science of Victorian Brown Coal,2004,223—285.
    [16]Chen Guanyi, Zhang Nan, Ma Wenchao, et al.Investigation of chloride deposit formation in a 24 MWe waste to energy plant[J]. Fuel,2015,140:317—327.
    [17]Antunes R A,Oliveira M C L D. Corrosion in biomass combustion:A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies[J]. Corrosion Science,2013,76(10):6—26.
    [18]Qin Zhihong,Chen Hang,Yan Yujie,et al. FTIR quantitative analysis upon solubility of carbon disulfide/N-methyl-2-pyrrolidinone mixed solvent to coal petrographic constituents[J]. Fuel Processing Technology,2015,133:14—19.
    [19]Catherine M, Poppe K J. Investigation on thermochemical behaviour of low rank Malaysian coal,oil palm biomass and their blends during pyrolysis viathermogravimetric analysis(TGA)[J]. Bioresource Technology,2010,101(12):4584—4592.
    [20]彭娟,周利民,邹丽霞,等. N2及H2气氛下钾催化生物质热解热重特征及动力学研究[J].太阳能学报,2015,36(12):3076—3082.[20]Peng Juan, Zhou Limin, Zou Lixia, et al.Thermogravimetric characteristics and kinetics of pyrolysis of potassium-catalyzed biomass under both N2and H2atmosphere)[J]. Acta Energiae Solaris Sinica,2015,36(12):3076—3082.
    [21]Khelfa A,Finqueneisel G,Auber M,et al. Influence of some minerals on the cellulose thermal degradation mechanisms-Thermogravimetic and pyrolysis-mass spectrometry studies[J]. Journal of Thermal Analysis&Calorimetry,2008,92(3):795—799.
    [22]Font R,Fullana A,Conesa J A,et al. Analysis of the pyrolysis and combustion of different sewage sludges by TG[J]. Journal of Analytical&Applied Pyrolysis,2001,58-59:927—941.
    [23]Souza B S,Moreira A P D,Teixeira A M R. FTG-FTIR coupling to monitor the pyrolysis products from agricultural residues[J]. Journal of Thermal Analysis&Calorimetry,2009,97(2):637—642.
    [24]Ponzio A,Kalisz S,Blasiak W. Effect of operating conditions on tar and gas composition in high temperature air/steam gasification(HTAG)of plastic containing waste[J]. Fuel Processing Technology,2006,87(3):223—233.
    [25]Kiel J,Paasen S V,Neeft J. Primary measures to reduce tar formationin fluidised-bed biomass gasifiers[R].Energy Research Center of the Netherlands(ECN),2004:108.
    [26]Gil S,Mocek P,Bialik W. Changes in total active centres on particle surfaces during coal pyrolysis,gasification and combustion[J]. Chemical and Process Engineering,2011,32(2):155—169.
    [27]孙加亮,王永刚,王芳,等. H2O/O2气氛下胜利褐煤气化半焦的孔隙特性[J].化工进展,2015,34(3):695—700.[27]Sun Jialiang,Wang Yonggang,Wang Fang,et al.Engineering porosity characteristics of chars from Shengli brown coal gasification under H2O/O2atmospheres[J]. Chemical Industry&Engineering Progress,2015,34(3):695—700.
    [28]王志光,杨旭,饶志雄,等.平顶山高灰熔融性温度煤的气化反应性研究[J].煤化工,2007,35(6):46—50.[28]Wang Zhiguang, Yang Xu, Rao Zhixiong, et al.Gasification reactivity of Pingdingshan coal with high ash melting point[J]. Coal Chemical Industry,2007,35(6):46—50.
    [29]梁鼎成,解强,党钾涛,等.不同煤阶煤中温热解半焦微观结构及形貌研究[J].中国矿业大学学报,2016,45(4):799—806.[29]Liang Dingcheng, Xie Qiang, Dang Jiatao,et al.Microcrystalline structure and morphology of charsderived from medium-temperature pyrolysis of coals with different metamorphism[J]. Journal of China University of Mining&Technology,2016,45(4):799—806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700