用户名: 密码: 验证码:
真实气体效应对Ma10级进气道流动的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Real-Gas Effects on Hypersonic Inlet Flow at Mach 10
  • 作者:张启帆 ; 岳连捷 ; 贾轶楠 ; 张新宇 ; 李欣 ; 高雄
  • 英文作者:ZHANG Qi-fan;YUE Lian-jie;JIA Yi-nan;ZHANG Xin-yu;LI Xin;GAO Xiong;State Key Laboratory of High Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences;Beijing Power Machinery Institute;
  • 关键词:真实气体效应 ; 高马赫数进气道 ; 化学非平衡气体模型 ; 热完全气体模型 ; 前缘钝化 ; 再起动性能
  • 英文关键词:Real-gas effect;;High Mach number inlet;;Chemical non-equilibrium gas model;;Thermally perfect gas model;;Leading-edge bluntness;;Restart capability
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:中国科学院力学研究所高温气体动力学国家重点实验室;北京动力机械研究所;
  • 出版日期:2018-11-16 17:11
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.263
  • 基金:国家自然科学基金(11472279;11672309)
  • 语种:中文;
  • 页:TJJS201905011
  • 页数:9
  • CN:05
  • ISSN:11-1813/V
  • 分类号:88-96
摘要
为了探究高马赫数超燃冲压发动机高速飞行时真实气体效应对进气道流场的影响,仿真获得了不同气体模型下Ma10级进气道流场结构和性能。结果表明:进气道主流流场温度较低,不足以触发空气的离解反应,反应仅发生在边界层内,但反应程度较低,远未达到化学平衡状态,除了边界层温度及热载荷特性,其流场结果则更为贴近冻结流流场,因而化学非平衡模型与热完全气体模型的进气道通流流场结构和性能基本一致。而真实气体效应导致边界层特性的不同,对进气道起动特性产生影响,吸热离解反应通过对进口分离包的抑制和增大进口马赫数将进气道的再起动马赫数从9.8降低到9.4。在对进气道在宽速域应用中的钝化设计研究发现,真实气体效应虽然对前缘钝化进气道流场的压力分布和性能无明显影响,但是其能起到整体降低壁面热流的作用,不仅钝头处的热流降低了1MW/m2,通道内的热流也整体降低了0.1MW/m2。
        A simulation study of a rectangular hypersonic inlet in different gas model has been proposed toenrich the understanding of the real-gas effect on the inlet flow pattern while the high speed scramjet flies at theMach 10. The results show that the air dissociation reaction can only be found in the boundary layer while the main-stream temperature is not high enough to trigger the chemical reaction. Because the low reaction degree in theboundary layer is far from the chemical equilibrium state,the flow pattern and characteristics of the inlet with chem-ical non-equilibrium gas model are basically identical with the results of the thermally perfect gas model which rep-resents the frozen flow,except the temperature and heat load in the boundary layer. Besides,the endothermic reac-tion in the boundary layer makes the inlet restarting Mach number decrease from 9.8 to 9.4 by inhibiting the en-trance separation bubble and increasing the entrance Mach number. Furthermore,a study of real gas effect on theinlet wide speed range characteristics,such as the leading-edge bluntness flow pattern,is carried out. And it isfound that the real-gas effect has no significant effect on the pressure distribution and inlet characteristics with theleading-edge bluntness. However,the bluntness can decrease the heat load distribution of the inlet,while the heatload around the leading edge and in the inlet duct decreases by 1 MW/m2 and 0.1 MW/m2,respectively.
引文
[1] Anderson J D. Hypersonic and High Temperature Gas Dynamics[M]. Reston:AIAA Education Series,2006.
    [2]卞荫贵,徐立功.气动热力学[M].合肥:中国科学大学出版社,1997.
    [3]樊菁.高超声速高温气体效应判据[J].力学学报,2010,42(4):591-596.
    [4]黄志澄.空天飞机的真实气体效应[J].气动实验与测量控制,1994,8(2):1-9.
    [5]叶友达.近空间高速飞行器气动特性研究与布局设计优化[J].力学进展,2009,39(6):683-694.
    [6] Griffith B J,MausJR,BestJT. Explanation oftheHypersonic Longitudinal Stability Problem-Lessons Learned In:Shuttle Performance:Lessons Learned[R]. NASA CP2283.
    [7] Weilmuenster K J,Gnoffo P A,and Greene F A. Navier-Stokes Simulations of Shuttle Orbiter Aerodynamic Characteristics with Emphasis on Pitch Trim and Body Flap[R]. AIAA 93-2814.
    [8] Bertin J J. Hypersonic Aerothermodynamics[J]. International Journal of Aeronatical and Space Sciences,1994,14(1):1-10.
    [9] Scott C D. Wall Catalytic Recombination and Boundary Conditions in Nonequilibrium Hypersonic Flows-with Applications. in:Advances in Hypersonics:Modeling Hypersonic Flows[R]. Boston:Birkhaeuser,1992.
    [10] Scott C D. A Review of Nonequilibrium Radiation in AOTV Flight Regimes[R]. AIAA 84-0306.
    [11]董维中.气体模型对高超声速再入钝体气动参数计算影响的研究[J].空气动力学报,2001,19(2):197-202.
    [12]柳军.热化学非平衡流及其辐射现象的实验和数值计算研究[D].长沙:国防科技大学,2004.
    [13] John R M. Simulation of Real-Gas Effects on Pressure Distribution for Aeroassist Flight Experiment Vehicle and Comparison with Prediction[R]. NASA TND-3157.
    [14] Whitmore S A. Real-Gas Extensions to Tangent-Wedge and Tangent-Cone Analysis Methods[J]. AIAA Journal,2007,45(8):2024-2032.
    [15] Mortensen C H,Zhong X L. Real-Gas and Surface-Ablation Effects on Hypersonic Boundary-Layer Instability over a Blunt Cone[J]. AIAA Journal,2016,54(3):976-994.
    [16] Willoh R G. Mathematic Analysis of Supersonic Inlet Dynamics[R]. NASA TND-4969.
    [17] Mahoney J J. Inlets for Supersonic Missiles[M]. USA:AIAA Education Series,1990.
    [18] Weir L J,et al. A New Concept for Supersonic Axisymmetric Inlets[R]. AIAA 2002-3775.
    [19] William H H,David T P. Hypersonic Airbreathing Propulsion[M]. USA:AIAA Education Series,1994.
    [20]李永洲,张堃元,钟启涛.型面设计马赫数对马赫数分布可控高超声速内收缩进气道的影响[J].南京航空航天大学学报,2014,46(2):239-245.
    [21]李大进,高雄,朱守梅.弯曲激波压缩曲面的二元高超声速进气道研究[J].推进技术,2013,34(11):1441-1447.(LI Da-jin,GAO Xiong,ZHU Shou-mei.Study of Hypersonic 2D-Inlet with Leading CurvedShock Wave Compression Ramp[J]. Journal of Propulsion Technology,2013,34(11):1441-1447.)
    [22]袁化成,郭荣伟.矩形截面高超声速进气道气动设计及实验验证[J].南京航空航天大学学报,2009,41(4):423-428.
    [23] H?berle J,and Gülhan A. Internal Flow Field Investigation of a Hypersonic Inlet at Mach 6 with Bleed[J].Journal of Propulsion and Power,2007,23(5):1007-1017.
    [24]栗莉.真实气体效应对高超声速进气道流场结构影响的研究[D].哈尔滨:哈尔滨工程大学,2013.
    [25]苏纬仪,张堃元,金志光.高超声速进气道附面层分离无源被动控制[J].推进技术,2011,32(4):455-460.(SU Wei-yi,ZHANG Kun-Yuan,JIN Zhiguang. Adaptive Passive Control on Hypersonic Inlet Boundary Layer Separation[J]. Journal of Propulsion Technology,2011,32(4):455-460.)
    [26]郑日升,李伟鹏,常军涛,等.“X”布局高超声速倒置进气道激波与附面层干扰控制研究[J].推进技术,2014,35(9):1153-1161.(ZHENG Ri-sheng,LI Wei-peng,CHANG Jun-tao,et al. Suppression of Interaction Between Shock Wave and Boundary Layer for"X"Hypersonic Inverted Inlet[J]. Journal of Propulsion Technology,2014,35(9):1153-1161.)
    [27]徐骁,岳连捷,卢洪波,等.高超声速进气道快速破膜开启的流动特性[J].航空学报,2015,36(6):1795-1804.
    [28] Yue L J,Lu H B,Xu X,et al. Flow Characteristics and Aerodynamic Heating of Bleed Slot in High Enthalpy Flow[J]. Science China Physics,Mechanics&Astronomy,2014,57(4):741-752.
    [29] Hannemann K,Schramm J M,Karl S,et al. Cylinder Shock Layer Density Profiles Measured in High Enthalpy Flows in HEG[R]. AIAA 2002-2913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700