用户名: 密码: 验证码:
大孔径空间外差干涉光谱成像技术多谱段成像仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy
  • 作者:才啟胜 ; 黄旻 ; 韩炜 ; 刘怡轩 ; 路向宁
  • 英文作者:Cai Qi-Sheng;Huang Min;Han Wei;Liu Yi-Xuan;Lu Xiang-Ning;Key Laboratory of Computational Optical Imaging Technology, Academy of Opto-Electronics, Chinese Academy of Sciences;
  • 关键词:傅里叶变换光谱 ; 多谱段 ; 高光谱 ; 空间外差
  • 英文关键词:Fourier transform spectroscopy;;multiband;;hyperspectral;;spatial heterodyne
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院光电研究院,计算光学成像技术重点实验室;
  • 出版日期:2018-11-21 10:59
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家重点研发计划(批准号:2016YFC0201100);; 中国科学院光电研究院创新项目(批准号:Y70B02A11Y)资助的课题~~
  • 语种:中文;
  • 页:WLXB201823010
  • 页数:9
  • CN:23
  • ISSN:11-1958/O4
  • 分类号:97-105
摘要
在大孔径空间外差干涉光谱成像技术(LASHIS)的基础上提出了一种多谱段成像方案.其采用LASHIS的外差探测原理,一方面,可通过较少的采样点数实现很高的光谱分辨率,保留了LASHIS的高光谱分辨率、高稳定性和高探测灵敏度的特点;另一方面,利用光栅的多级衍射性质,实现同一系统的多谱段同时探测,拓宽了光谱探测范围.首先,阐述了LASHIS多谱段成像方案的基本原理;然后,分析了多谱段探测与谱段解混方式;最后,对该方案进行了计算机仿真模拟,通过ZEMAX光线追迹的干涉图结果与理论计算结果相符合,验证了方案的正确性.基于LASHIS的多谱段成像方案所具有的高光谱分辨率、高探测灵敏度以及可实现同一系统的多谱段同时探测特点,尤其适合温室气体等高稳定性、高探测灵敏度的多谱段高光谱探测应用.
        A multiband imaging technology based on large aperture spatial heterodyne imaging spectroscopy(LASHIS) is proposed in this paper. It retains the advantages of high spectral resolution, high stability and high detection sensitivity of LASHIS. In addition, by using the multistage diffraction gratings, several spectral bands can be detected simultaneously in this system, thus the spectral range is broadened. The basic principle of this multiband imaging technology based on LASHIS is described. The difference between optical path differences produced by the Sagnac lateral shearing interferometer and the parallel gratings is calculated. The mathematical expressions, the interferogram calculation procedures, and the spectrum reconstruction method are presented. As a pair of multistage diffraction gratings is introduced into the Sagnac interferometer, the rays of different diffraction orders corresponding to different spectral bands are mixed together in the interferometer. The spectral bands should be separated before they are imaged on the detector. Two separation methods are proposed: introducing a filter array in front of the detector and introducing dichroic mirrors to assign different spectral bands to different detectors. Finally, a design example is given and an optical model is setup in ZEMAX. In this example, a pair of parallel echelon gratings with 316 lines/mm is introduced into the Sagnac interferometer. Two dichroic mirrors and three detectors are used to separate and detect three spectral bands simultaneously. The three spectral ranges are from 529.2 nm to 532.96 nm, from 588 nm to 592.18 nm, and from 661.5 nm to 666.20 nm. The average spectral resolutions are 0.015 nm, 0.016 nm, and 0.018 nm respectively. Two kinds of sources are analyzed: one is a sodium lamp with two emission peaks at 589 nm and 589.6 nm, and the other is a source with three monochromatic wavelengths at 530 nm, 589 nm, and 662 nm. The interferograms of these two sources traced in the optical model are consistent with the theoretical results. The recovered spectra show good agreement with the input spectra. These verified the correctness of the principle and the spectrum reconstruction method. The multiband imaging technology based on LASHIS with the advantages of high spectral resolution, high detection sensitivity, and multiband detection capability, is especially suitable for multiband hyperspectral highstability and high-sensitivity detection, such as the detection of greenhouse gases.
引文
[1] Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234
    [2] Harlander J M, Roesler F L, Cardon J G, Englert C R,Conway R R 2002 Appl. Opt. 41 1343
    [3] Harlander J M, Roesler F L, Englert C R, Cardon J G,Conway R R, Brown C M, Wimperis J 2003 Appl. Opt.42 2829
    [4] Englert C R, Babcock D D, Harlander J M 2009 Opt.Eng. 48 105602
    [5] Harlander J M, Englert C R, Babcock D D, Roesler F L2010 Opt. Express 18 26430
    [6] Ye S, Fang Y H, Hong J, Qiao Y L, Xiong W 2007 OptoElectron. Eng. 34 84(in Chinese)[叶松,方勇华,洪津,乔延利,熊伟2007光电工程34 84]
    [7] Shi H L, Fang Y H, Xiong W, Luo H Y, Wu J 2010 J.Atmosph. Environ. Opt. 5 463(in Chinese)[施海亮,方勇华,熊伟,罗海燕,吴军2010大气与环境光学学报5 463]
    [8] Feng Y T, Bai Q L, Wang Y M, Hu B L, Wang S N 2012Acta Opt. Sin. 32 264(in Chinese)[冯玉涛,白清兰,王咏梅,胡炳樑,王姝娜2012光学学报32 264]
    [9] Xiong W 2018 Spacecraft Recov. Remot. Sens. 39 14(in Chinese)[熊伟2018航天返回与遥感39 14]
    [10] Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357148
    [11] Cai Q S, Xiang L B, Huang M, Han W, Pei L L, Bu M X 2018 Opt. Commun. 410 403
    [12] Kuze A, Urabe T, Suto H, Kaneko Y, Hamazaki T 2006Proc. SPIE 6297 62970K
    [13] Kuze A, Suto H, Nakajima M, Hamazaki T 2009 Appl.Opt. 48 6716
    [14] Basilio R R, Pollock H R, Hunyadi-Lay S L 2014 Proc.SPIE 9241 924105
    [15] Crisp D 2015 Proc. SPIE 9607 960702
    [16] Zhang H, Lin C, Zheng Y, Wang W, Tian L, Liu D, Li S 2016 J. Appl. Remote Sens. 10 024003
    [17] Liu Y, Cai Z N, Yang D X, Duan M Z, Lv D R 2013Chin. Sci. Bull. 58 2787(in Chinese)[刘毅,蔡兆男,杨东旭,段民征,吕达仁2013科学通报58 2787]
    [18] Yang Z D, Bi Y M, Wang Q, Zheng Y Q, Yin Z S 2016Space International 456 13(in Chinese)[杨忠东,毕研盟,王倩,郑玉权,尹增山2016国际太空456 13]
    [19] Liu Y, Lv D R, Chen H B, Yang D X, Min M 2011 Remot. Sens. Technol. Appl. 26 247(in Chinese)[刘毅,吕达仁,陈洪滨,杨东旭,闵敏2011遥感技术与应用26 247]
    [20] Cai Q S 2016 Ph. D. Dissertation(Hefei:University of Science and Technology of China)(in Chinese)[才啟胜2016博士学位论文(合肥:中国科学技术大学)]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700