用户名: 密码: 验证码:
基于功率的附加有效阻尼比计算方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on power calculation method of additional effective damping ratio
  • 作者:周云 ; 商城豪
  • 英文作者:Zhou Yun;Shang Chenghao;School of Civil Engineering, Guangzhou University;
  • 关键词:消能减震结构 ; 附加有效阻尼比 ; 功率计算方法 ; 应变能法
  • 英文关键词:energy dissipation structure;;additional effective damping ratio;;power calculation method;;strain energy method
  • 中文刊名:JCJG
  • 英文刊名:Building Structure
  • 机构:广州大学土木工程学院;
  • 出版日期:2019-06-10
  • 出版单位:建筑结构
  • 年:2019
  • 期:v.49;No.503
  • 语种:中文;
  • 页:JCJG201911018
  • 页数:6
  • CN:11
  • ISSN:11-2833/TU
  • 分类号:114-119
摘要
消能减震结构附加有效阻尼比计算一般采用基于能量的应变能法。相比能量,功率反映能量的耗散效率,具有瞬时特性,对于速度相关型消能器,风振设计时经常要求计算功率,使用功率计算附加有效阻尼比将更加合理直接。推导了基于功率的附加有效阻尼比计算方法(功率计算方法),比较功率计算方法与应变能法的差异性,通过一个多层与一个超高层工程实例对功率计算方法与应变能法的计算效果进行研究。结果表明,应变能法计算结果较为保守,功率计算方法计算结果更符合实际。建议计算速度相关型消能器附加有效阻尼比时优先采用功率计算方法。
        Energy-based strain energy method is usually used to calculate the additional effective damping ratio of energy dissipation structures. Compared with energy, power reflects energy dissipation efficiency and has instantaneous characteristics. For speed-dependent energy dissipators, the calculation of power is often required in wind-induced vibration design. It is more reasonable and direct to use power to calculate additional effective damping ratio. The power calculation method of additional effective damping ratio was deduced. The difference between power calculation method and strain energy method was compared. The calculation effect of power calculation method and strain energy method was studied through a multi-layer and a super high-rise engineering example. The results show that the strain energy method is more conservative and the power calculation method is more practical. It is suggested that the power calculation method should be preferred when calculating the additional effective damping ratio of velocity-dependent dampers.
引文
[1] Guidelines and commentary for the seismic rehabilitation of buildings:FEMA-273 [S].Washington D.C.:National Earthquake Hazards Reduction Program,1997.
    [2] 建筑抗震设计规范:GB 50011—2010 [S].北京:中国建筑工业出版社,2010.
    [3] 建筑消能减震技术规程:JGJ 297—2013 [S].北京:中国建筑工业出版社,2013.
    [4] 陈瑜.粘滞阻尼消能支撑结构的抗震设计参数研究[D].南京:南京工业大学,2003.
    [5] PEKCAN G,MANDER J B,CHEN S S.Fundamental considerations for the design of non-linear viscous dampers[J].Earthquake Engineering & Structural Dynamics,1999,28(11):1405-1425.
    [6] 付君宜.附加粘滞阻尼器结构基于性能的抗震设计方法研究[D].西安:长安大学,2014.
    [7] 陈永祁,曹铁柱,马良喆.液体黏滞阻尼器在超高层结构上的抗震抗风效果和经济分析[J].土木工程学报,2012,45(3):58-66.
    [8] 陈斯聪,周云,商城豪.基于黏滞阻尼器耗散功率的超高层结构风振设计方法[J].建筑结构,2017,47(8):69-75.
    [9] 李波.消能减震结构基于性能的抗震设计理论与方法研究[D].西安:西安建筑科技大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700