用户名: 密码: 验证码:
光电离速率影响大气压空气正流注分支的机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of photoionization rates on positive streamer branching in atmospheric air
  • 作者:涂婧怡 ; 陈赦 ; 汪沨
  • 英文作者:Tu Jing-Yi;Chen She;Wang Feng;College of Electrical and Information Engineering, Hunan University;
  • 关键词:流注放电 ; 分支 ; 光电离 ; PIC-MCC ; 大气压等离子体
  • 英文关键词:streamer discharge;;branching;;photoionization;;PIC-MCC;;atmospheric pressure plasma
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:湖南大学电气与信息工程学院;
  • 出版日期:2019-04-22 09:51
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:51607061,51677061);; 中央高校基本科研业务费(批准号:531107040929)资助的课题~~
  • 语种:中文;
  • 页:WLXB201909023
  • 页数:9
  • CN:09
  • ISSN:11-1958/O4
  • 分类号:203-211
摘要
大气压空气中的流注放电有广泛的理论和应用研究价值,包括雷电机理、输变电系统空气绝缘理论以及材料表面改性等.流注是一个快速发展的强电离区域,在传播过程中存在着一种重要的特点—分支现象.光电离为正流注发展提供必要的自由电子,且实验结果表明分支特征与流注头部的光电离速率密切相关.本文基于新的流注分支判据,采用了粒子网格单元与蒙特卡罗碰撞相结合(PIC-MCC)的三维放电模型(Pamdi3D)进行数值仿真验证.为了研究光电离速率对正流注分支的影响,仿真了毫米尺度间隙针-板电极正流注发展,系统研究了不同光电离参数的影响.当减小氮气-氧气比例、光子吸收截面或光电离效率系数后,流注均更早地出现分支现象.这些计算结果表明大气压空气中流注头部光电离速率的降低将导致其发生分支的概率更高.
        Streamer is a strong ionizing region which advances very quickly in gases, liquids and solids. Streamer is a low-temperature plasma, which produces a variety of chemically reactive substances efficiently. So, streamer discharge has been widely adopted in industry. Furthermore, streamer is the initial stage of electric breakdown in long air gap. Studying the streamer discharge characteristics and its mechanism is the basis of external insulation in power transmission systems.Streamer branching is a significant characteristic during its development. Lichtenberg figure is the first clear recording of the filamentary structure of streamers. One of acceptable explanations is that the random fluctuations of the electron density ahead of streamer trigger branching. Furthermore, photoionization provides the necessary free electrons for the development of positive streamers. The experimental results show that the branching characteristics are closely related to the photoionization rate in streamer head. The streamer shows higher possibility of branching if the photoionization rate decreases. Since previous experiment is indirect evidence of this deduction, we turn to numerical models to study the influence of photoionization rates on positive streamer branching in atmospheric air. A three-dimensional particle-in-cell model with Monte Carlo collision(PIC-MCC) scheme called Pamdi3 D(Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25044005) is employed in this paper. The development and branching of positive streamersin a millimeter-scale needle-plane gap are simulated at atmospheric pressure. Different streamer branching behaviors are investigated by artificially changing the nitrogen-oxygen ratio, the absorption cross section of oxygen, and the photoionization efficiency coefficient.The effects of different photoionization parameters are systematically studied. When the nitrogen-oxygen ratio, photon absorption cross section or photoionization efficiency coefficient are reduced, the streamer branching occurs earlier in three cases after reducing the photoionization rate. These results imply that the streamer shows higher possibility of branching if the photoionization rate decreases. When the streamer propagates in a non-uniform electric field region and the photoionization rate decreases to a certain value, it is believed that the seed electron distribution is more susceptible to random fluctuations. It will lead to instability in the space charge layer of streamer, thus causing the streamer to branch. Hence it is proposed that streamer branch will be triggered more easily if the photoionization rate in the streamer head decreases, in the case without considering other seed electron sources.
引文
[1] Chang J, Lawless P A, Yamamoto T 1991 Plasma Sci. IEEE Trans. 19 1152
    [2] Shao T, Wang R, Zhang C, Yan P 2016 High Voltage 3 14
    [3] Gallimberti I, Bacchiega G, Bondiou-Clergerie A, Lalande P2002 Compt. Rendus Phys. 3 1335
    [4] Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys.Sin. 62 124703(in Chinese)[李元,穆海宝,邓军波,张冠军,王曙鸿2013物理学报62 124703]
    [5] Pasko V P, Stanley M A, Mathews J D, Inan U S, Wood T G2002 Nature 416 152
    [6] Raizer Y P 1991 Gas Discharge Physics(Berlin:SpringerVerlag)pp334-337
    [7] Nijdam S, Takahashi E, Teunissen J, Ebert U 2014 New J.Phys. 16 103038
    [8] Pancheshnyi S 2005 Plasma Sources Sci. Technol. 14 645
    [9] Nijdam S, Wormeester G, van Veldhuizen E M, Ebert U 2011J. Phys. D:Appl. Phys. 44 455201
    [10] Liu N, Pasko V P 2004 J. Geophys. Res.:Space Phys. 109 A4
    [11] Zhelezniak M B, Mnatsakanian A K, Sizykh S V 1982 High Temperat. Sci. 20 423
    [12] Chen S, Wang F, Sun Q, Zeng R 2018 IEEE Trans. Dielectr.Electr. Insulat. 25 1128
    [13] Nasser E, Loeb L B 1963 J. Appl. Phys. 34 3340
    [14] van Veldhuizen E M, Rutgers W R 2002 J. Phys. D:Appl.Phys. 35 2169
    [15] Chen S, Zeng R, Zhuang C 2013 J. Phys. D:Appl. Phys. 46375203
    [16] Zeng R, Chen S 2013 J. Phys. D:Appl. Phys. 46 485201
    [17] Luque A, Ebert U 2011 Phys. Rev. E 84 046411
    [18] Chen S, Wang F, Sun Q, Zeng R 2018 IEEE Trans. Dielectr.Electr. Insulat. 25 2112
    [19] Ono R, Oda T 2003 J. Phys. D:Appl. Phys. 36 1952
    [20] Briels T M P, van Veldhuizen E M, Ebert U 2008 J. Phys. D:Appl. Phys. 41 234008
    [21] Heijmans L C J, Nijdam S, van Veldhuizen E M, Ebert U2013 Europhys. Lett. 103 25002
    [22] Papageorgiou L, Metaxas A C, Georghiou G E 2011 IEEE Trans. Plasma Sci. 39 2224
    [23] Arrayas M, Fontelos M A, Kindelan U 2012 Phys. Rev. E 86066407
    [24] Xiong Z, Kushner M J 2014 Plasma Sources Sci. Technol. 23065041
    [25] Zhuang C, Huang M, Zeng R 2018 Commun. Computat.Phys. 24 1259
    [26] Chanrion O, Neubert T 2008 J. Computat. Phys. 227 7222
    [27] Teunissen J, Ebert U 2014 J. Computat. Phys. 259 318
    [28] Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66195101(in Chinese)[孙安邦,李晗蔚,许鹏,张冠军2017物理学报66 195101]
    [29] Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018 Acta Phys. Sin. 67 045101(in Chinese)[李晗蔚,孙安邦,张幸,姚聪伟,常正实,张冠军2018物理学报67 045101]
    [30] Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25044005
    [31] Penney G W, Hummert G T 1970 J. Appl. Phys. 41 572

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700