用户名: 密码: 验证码:
凹廊式高层建筑火灾烟气蔓延数值模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation analysis on fire smoke spread in high-rise buildings with corridor structure
  • 作者:解北京 ; 杨宇 ; 李琪
  • 英文作者:XIE Bei-jing;YANG Yu;LI Qi;School of Resource and Safety Engineering, China University of Mining and Technology (Beijing);
  • 关键词:高层建筑 ; 凹廊结构 ; 火灾蔓延 ; 烟气蔓延 ; 温度分布 ; 数值模拟
  • 英文关键词:high-rise building;;corridor structure;;fire spread;;smoke spread;;temperature distribution;;numerical simulation
  • 中文刊名:XFKJ
  • 英文刊名:Fire Science and Technology
  • 机构:中国矿业大学(北京)资源与安全工程学院;
  • 出版日期:2019-01-15
  • 出版单位:消防科学与技术
  • 年:2019
  • 期:v.38;No.283
  • 基金:中央高校基本科研业务费专项资金项目(2014QZ05)
  • 语种:中文;
  • 页:XFKJ201901026
  • 页数:4
  • CN:01
  • ISSN:12-1311/TU
  • 分类号:84-87
摘要
以某火灾事故建筑为原型,运用FDS模拟凹廊式高层建筑火灾的蔓延过程,对比室外凹廊处和室内起火的条件下烟气蔓延情况,分析凹廊处起火烟气蔓延速度、温度、遮光率和烟气的质量浓度等参数的变化以及有无主导风向对火灾蔓延的影响。结果表明:烟气垂直方向蔓延速度表现为距离着火点越近速度越快;有凹廊设计的高层建筑更易形成"烟囱效应",加速火势蔓延,应提高凹廊处耐火限度,增加防火、防烟设施;凹廊式建筑设计施工中应对主导风向的下风向一侧提升耐火限度。
        Taking the building of a fire accident as the prototype,FDS was used to simulate the spread process of high-rise building fire with corridor structure. Comparative analysis on the smoke spread of the outdoor corridor structure fire and indoor fire, changes in parameters such as fire smoke spread speed, temperature,shading rate, and smoke mass concentration at the alcove were analyzed, and the spread of fire with and without dominant wind direction was analyzed too. The results showed that: the closer to the ignition point, the faster the fire smoke spreads vertically. High-rise buildings with a corridor design are more likely to form a "chimney effect" and accelerate the spread of fire. Therefore, the fire resistance limit at the structure of the corridor should be increased, and fire prevention and smoke prevention facilities should be added.During the design and construction of a building with a corridor structure, the fire resistance limit at downwind side of the dominant wind should be raised.
引文
[1]史健勇,刘湃,许清风.室外风对高层建筑外保温层火灾发展的影响研究[J].防灾减灾工程学报,2014,34(5):571-576.
    [2]赵义虎.多层建筑火灾烟气蔓延规律及控制措施的研究[D].北京:首都经济贸易大学,2017.
    [3]CODESCU S,PANAITESCU V,POPESCU D,et al.Study and improvement of road tunnels fire behavior using PyroSim[J].Applied Mechanics&Materials,2014,657:790-794.
    [4]唐虎潇.探讨凹型建筑外立面火灾竖向蔓延[J].消防科学与技术,2017,36(8):1055-1058.
    [5]张威,何嘉鹏,李静娴,等.高层建筑L形走廊火灾烟气控制模拟[J].消防科学与技术,2010,29(12):1065-1067.
    [6]张慧,施微,陈军华.高层建筑走廊排烟效果分析[J].消防科学与技术,2012,31(8):812-815.
    [7]黄冬梅,朱杰,夏锐,等.室外风对高层建筑竖井内烟气运动影响的数值模拟[J].消防科学与技术,2007,26(6):595-598.
    [8]龙文志.上海“11·15”火灾的思考[J].中国建筑金属结构,2010,38(12):43-48.
    [9]田利伟.室内环境颗粒物浓度预测模型及污染控制策略研究[D].长沙:湖南大学,2009.
    [10]王妍卉.作为建筑自然通风的“烟囱效应”实验研究[D].武汉:华中科技大学,2010.
    [11]邹金杰,吴向东,杨其新.竖井烟囱效应对隧道火灾影响的数值模拟分析[J].现代隧道技术,2007,44(5):15-18.
    [12]ZHAO D,LI Y.Carbon segregation atΣ3{112}grain boundaries in silicon[J].Computational Materials Science,2018,143:80-86.
    [13]毛少华.烟气中性面的理论模型及实验研究[D].合肥:中国科学技术大学,2012.
    [14]刘道强,徐志胜,王飞跃.建筑材料火灾烟气减光性能的试验研究[J].中国安全科学学报,2005,15(3):53.
    [15]许镇,唐方勤,任爱珠.建筑火灾烟气危害评价模型及应用[J].消防科学与技术,2010,29(8):651-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700