用户名: 密码: 验证码:
船用螺旋桨流动尺度解析模拟与粒子图像测速验证(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Scale-resolving simulation and particle image velocimetry validation of the flow around a marine propeller
  • 作者:Chun-bao ; LIU ; Jing ; LI ; Yuan ; LI ; Tong-jian ; WANG
  • 英文作者:Chun-bao LIU;Jing LI;Yuan LI;Tong-jian WANG;School of Mechanical and Aerospace Engineering, Jilin University;State Key Laboratory of Automotive Simulation and Control, Jilin University;
  • 关键词:螺旋桨 ; 数值模拟 ; 尺度分辨模拟 ; PIV试验
  • 英文关键词:Propeller;;Numerical simulation;;Scale-resolving simulation(SRS);;Particle image velocimetry(PIV) test
  • 中文刊名:ZDYG
  • 英文刊名:浙江大学学报A辑(应用物理与工程)(英文版)
  • 机构:School of Mechanical and Aerospace Engineering, Jilin University;State Key Laboratory of Automotive Simulation and Control, Jilin University;
  • 出版日期:2019-08-03
  • 出版单位:Journal of Zhejiang University-Science A(Applied Physics & Engineering)
  • 年:2019
  • 期:v.20
  • 基金:supported by the Key Scientific and Technological Project of Jilin Province(No.20170204066GX);; the Science and Technology Projects in Department of Education,Jilin Province(No.JJKH20170785KJ);; the Advanced Manufacturing Projects of Government and University Co-construction Program Funded by Jilin Province(No.SXGJSF2017-2)
  • 语种:英文;
  • 页:ZDYG201908002
  • 页数:11
  • CN:08
  • ISSN:33-1236/O4
  • 分类号:4-14
摘要
目的:船用螺旋桨性能评估中常用的雷诺平均方法(RANS)存在许多难题,特别是在处理边界层发展、尺度效应、翼尖和轮毂涡等复杂流动现象时。本文使用动态大涡模拟(DLES)、延迟分离涡模拟(DDES)和应力混合涡模拟(SBES)三种尺度解析模拟(SRS)方法,以提高流动特性预测的准确性。创新点:1.通过SRS方法详细地描述螺旋桨流场的不规则和多尺度湍流结构;2.通过粒子图像测速(PIV)试验,分析缩比螺旋桨的真实流场。方法:1.考虑叶片的周期分布和计算消耗,提取1/5的螺旋桨计算区域,并采用局部网格细化方法,获得分辨率足够高的网格模型(图1);通过仿真结果与已有试验数据的对比,验证SRS方法在螺旋桨性能预测方面的可行性与有效性(图3)。2.通过搭建PIV试验装置(图4),得到缩比螺旋桨在特定横截面上的速度和涡量分布情况下的尾流演变(图9和10),从而分析SRS方法对流场结构的捕捉能力。结论:1.通过定量和定性分析发现,SRS方法在预测特征参数和捕捉流场信息方面表现良好,特别是值得重点关注的SBES模型;2.作为一种可视化流场分析工具,PIV测量方法可以为螺旋桨等旋转机械的设计和性能改进提供一定的参考依据。
        There are many unresolved issues in Reynolds-averaged Navier-Stokes(RANS) calculations of marine propeller performance, especially in the treatment of complex flow phenomena such as boundary-layer development, scale effects, and tip and hub vortices. The particular focus of this study was to apply three scale-resolving simulation(SRS) methods, i.e. dynamic large eddy simulation(DLES), delayed detached-eddy simulation(DDES), and stress-blended eddy simulation(SBES), to improve the prediction of flow characteristics. Firstly, the effectiveness of the SRS methods was verified by comparing numerical results with experimental data. The external performance of rotating machinery is determined by internal flow structures. Particle image velocimetry(PIV) measurement is established as a visualization tool to analyze the wake evolution of a scaled propeller by velocity and vorticity contours in a specified cross-section plane. We found that SRS methods, especially the SBES model, performed well in predicting characteristic parameters and capturing flow field information via quantitative and qualitative analyses.The ability to accurately predict flow characteristics can make computational tools more effective in meeting the needs of modern propeller design and analysis.
引文
Chase N,Carrica PM,2013.Submarine propeller computations and application to self-propulsion of DARPA Suboff.Ocean Engineering,60:68-80.https://doi.org/10.1016/j.oceaneng.2012.12.029
    Chesnakas C,Jessup S,1998.Experimental characterization of propeller tip flow.Proceedings of the 22nd Symposium on Naval Hydrodynamics,p.156-169.
    Dubbioso G,Muscari R,Ortolani F,et al.,2017.Analysis of propeller bearing loads by CFD.Part I:straight ahead and steady turning maneuvers.Ocean Engineering,130:241-259.https://doi.org/10.1016/j.oceaneng.2016.12.004
    Felli M,Falchi M,Dubbioso G,2015.Hydrodynamic and hydroacoustic analysis of a marine propeller wake by TOMO-PIV.Proceedings of the 4th International Symposium on Marine Propulsors.
    Gritskevich MS,Garbaruk AV,Schütze J,et al.,2012.Development of DDES and IDDES formulations for the k-ωshear stress transport model.Flow,Turbulence and Combustion,88(3):431-449.https://doi.org/10.1007/s10494-011-9378-4
    Jahoda M,Mo?t?k M,KukukováA,et al.,2007.CFD modelling of liquid homogenization in stirred tanks with one and two impellers using large eddy simulation.Chemical Engineering Research and Design,85(5):616-625.https://doi.org/10.1205/cherd06183
    Kleinw?chter A,Ebert E,Kostbade R,et al.,2015.PIV as a novel full-scale measurement technique in cavitation research.Proceedings of the 3rd International Symposium on Marine Propulsors.
    Kleinw?chter A,Hellwig-Rieck K,Heinke HJ,et al.,2017.Full-scale total wake field PIV-measurements in comparison with ANSYS CFD calculations:a contribution to a better propeller design process.Journal of Marine Science and Technology,22(2):388-400.https://doi.org/10.1007/s00773-016-0418-6
    Korsstr?m A,Miettinen P,H?nninen SK,et al.,2015.Investigation of the propeller slip stream over an Azipod propulsor by PIV measurements and CFD simulations.Proceedings of the 4th International Symposium on Marine Propulsors.
    Kumar P,Mahesh K,2015.Analysis of marine propulsor in crashback using large eddy simulation.Proceedings of the4th International Symposium on Marine Propulsors.
    Kumar P,Mahesh K,2016.Towards large eddy simulation of hull-attached propeller in crashback.Proceedings of the31st Symposium on Naval Hydrodynamics.
    Kumar P,Mahesh K,2017.Large eddy simulation of propeller wake instabilities.Journal of Fluid Mechanics,814:361-396.https://doi.org/10.1017/jfm.2017.20
    Li ZP,Song G,Bao YY,et al.,2013.Stereo-PIV experiments and large eddy simulations of flow fields in stirred tanks with Rushton and curved-Blade turbines.AICh E Journal,59(10):3986-4003.https://doi.org/10.1002/aic.14117
    Lin D,Su XR,Yuan X,2018.DDES analysis of the wake vortex related unsteadiness and losses in the environment of a high-pressure turbine stage.Journal of Turbomachinery,140(4):041001.https://doi.org/10.1115/1.4038736
    Liu CB,Li J,Bu WY,et al.,2018.Application of scaleresolving simulation to a hydraulic coupling,a hydraulic retarder,and a hydraulic torque converter.Journal of Zhejiang University-SCIENCE A(Applied Physics and Engineering),19(12):904-925.https://doi.org/10.1631/jzus.A1700508
    Menter FR,2012.Best Practice:Scale-resolving Simulations in ANSYS CFD.ANSYS Germany GmbH.
    Mizzi K,Demirel YK,Banks C,et al.,2017.Design optimisation of Propeller Boss Cap Fins for enhanced propeller performance.Applied Ocean Research,62:210-222.https://doi.org/10.1016/j.apor.2016.12.006
    Mofidi A,Carrica PM,2014.Simulations of zigzag maneuvers for a container ship with direct moving rudder and propeller.Computers&Fluids,96:191-203.https://doi.org/10.1016/j.compfluid.2014.03.017
    Morgut M,Nobile E,2012.Influence of grid type and turbulence model on the numerical prediction of the flow around marine propellers working in uniform inflow.Ocean Engineering,42:26-34.https://doi.org/10.1016/j.oceaneng.2012.01.012
    Ning Z,Hu H,2016.An experimental study on the aerodynamics and aeroacoustic characteristics of small propellers.Proceedings of the 54th AIAA Aerospace Sciences Meeting,p.1785.https://doi.org/10.2514/6.2016-1785
    Ning Z,Wlezien RW,Hu H,2017.An experimental study on small UAV propellers with serrated trailing edges.Proceedings of the 47th AIAA Fluid Dynamics Conference,p.3813.https://doi.org/10.2514/6.2017-3813
    Paik KJ,Hwang S,Jung J,et al.,2015.Investigation on the wake evolution of contra-rotating propeller using RANScomputation and SPIV measurement.International Journal of Naval Architecture and Ocean Engineering,7(3):595-609.https://doi.org/10.1515/ijnaoe-2015-0042
    Seo J,Seol DM,Han B,et al.,2016.Turbulent wake field reconstruction of VLCC models using two-dimensional towed underwater PIV measurements.Ocean Engineering,118:28-40.https://doi.org/10.1016/j.oceaneng.2016.03.021
    Yang Y,Zhou T,Sciacchitano A,et al.,2017.Experimental investigation of the impact of a propeller on a streamwise impinging vortex.Aerospace Science and Technology,69:582-594.https://doi.org/10.1016/j.ast.2017.07.017
    Yang Y,Sciacchitano A,Veldhuis LLM,et al.,2018.Analysis of propeller-induced ground vortices by particle image velocimetry.Journal of Visualization,21(1):39-55.https://doi.org/10.1007/s12650-017-0439-1
    Yang ZY,2015.Large-eddy simulation:past,present and the future.Chinese Journal of Aeronautics,28(1):11-24.https://doi.org/10.1016/j.cja.2014.12.007
    Yao JX,2015.Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations.International Journal of Naval Architecture and Ocean Engineering,7(1):56-69.https://doi.org/10.1515/ijnaoe-2015-0005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700