用户名: 密码: 验证码:
纳米纤维素去除水体系重金属离子的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in nanocellulose for the removal of heavy metal ions in water
  • 作者:覃发梅 ; 邱学青 ; 孙川 ; 丁子先 ; 方志强
  • 英文作者:QIN Famei;QIU Xueqing;SUN Chuan;DING Zixian;FANG Zhiqiang;School of Chemistry and Chemical Engineering, South China University of Technology;Guangdong Engineering Research Center for Green Fine Chemicals;State Key Laboratory of Pulp and Paper Engineering, South China University of Technology;
  • 关键词:重金属离子 ; 纳米纤维素 ; 吸附 ; 化学改性 ; 结构设计
  • 英文关键词:heavy metal ion;;nanocellulose;;adsorption;;chemical modification;;structural design
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:华南理工大学化学与化工学院;广东省绿色精细化学产品工程技术研究开发中心;华南理工大学制浆造纸工程国家重点实验室;
  • 出版日期:2019-05-08 11:33
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:国家自然科学青年科学基金(31700508);; 广东省自然科学基金-博士启动(2017A030310635);; 广东省科技计划(2017B090903003);; 广州市珠江科技新星专项(201806010141)
  • 语种:中文;
  • 页:HGJZ201907042
  • 页数:12
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:383-394
摘要
水体系重金属污染治理是目前全世界所面临的一个重大挑战。传统治理方法由于成本高、效率低等问题已不符合当今社会可持续发展战略。纳米纤维素凭借其来源丰富、可再生、化学反应活性高、比表面积大、密度低等优点,在水体系重金属离子去除领域有着光明的应用前景。然而,纳米纤维素吸附材料在水体系重金属去除领域还存在吸附量较低,吸附选择性、再生性、性能稳定性较差,制备成本较高等问题,这限制了其在水体系重金属离子去除领域的工业化应用。通过改性和结构设计不断提高纳米纤维素材料的吸附效率是行之有效的途径,本文从化学改性和结构设计两方面出发,系统地综述了纳米纤维素在水体系重金属离子去除领域的研究现状,并对其中存在的科学技术问题进行总结。最后,展望了纳米纤维素在水体系重金属离子去除领域的发展趋势。
        Heavy metal pollution treatment in water is one of the great challenges all over the world.Traditional treatment methods cannot meet the growing requirements of the sustainable development of our society because of high treatment cost and low efficiency. Nanocellulose has advantages of earth abundance, excellent chemical reactivity, large specific surface area, and relatively low density, and demonstrates its foreseeable applications in the removal of heavy metal ions in water. However, removing metal ions in water by nanocellulose adsorbents remains a challenge due to its low adsorption capacity,poor selectivity, poor reproducibility, and performance instability, which restricts its commercial applications. One of the effective methods to enhance the adsorption efficiency is by modifying the surface properties of nanocellulose and/or designing the structure of nanocellulose absorbents. This review first covered the recent advances in nanocellulose for removing heavy metal ions in water in terms of chemical modifications and structural design of nanocellulose. Then, the scientific problems existing in this field were summarized in detail. Finally, the future development trend of nanocellulose in the field of heavy metal ions removal in water was envisioned.
引文
[1]宋珍霞,张继梅,巨梦蝶,等.抗坏血酸稳定纳米零价铁的制备及其在含Cd(Ⅱ)废水处理中的应用[J].化工进展, 2018, 37(8):3231-3237.SONG Z X, ZHANG J, JU M D. Preparation of L-ascorbic acidstabilized nanoscale zerovalent iron and its application in Cd(Ⅱ)wastewater treatment[J]. Chemical Industry and Engineering Progress,2018, 37(8):3231-3237.
    [2]杨二帅,蔡晓君,周梅,等.重金属废水的处理技术研究[J].当代化工, 2018, 47(1):167-170.YANG E S, CAI X J, ZHOU M, et al. Study on treatment technologies of heavy metal wastewater[J]. Contemporary Chemical Industry, 2018,47(1):167-170.
    [3]杨悦锁,陈煜,李盼盼,等.土壤、地下水中重金属和多环芳烃复合污染及修复研究进展[J].化工学报, 2017, 68(6):2219-2232.YANG R S, CHEN Y, LI P P, et al. Research progress on cocontamination and remediation of heavy metal ions and polycyclic aromatic hydrocarbons in soil and groundwater[J]. CIESC Journal,2017, 68(6):2219-2232.
    [4] BAI H, ZAN X, JUAY J, et al. Hierarchical heteroarchitectures functionalized membrane for high efficient water purification[J].Journal of Menbrane Science, 2015, 475:245-251.
    [5] WILLNER, MARJORIE R, VIKESLAND, et al. Nanomaterial enabled sensors for environmental contaminants[J]. Journal of Nanobiotechnology, 2018, 16(1):95.
    [6] TAN K W, HEO S K, FOO M L, et al. An insight into nanocellulose as soft condensed matter:challenge and future prospective toward environmental sustainability[J]. Science of the Total Environment.2019, 650(1):1306-1329.
    [7] MAHFOUDHI N, BOUFI S. Nanocellulose as a novel nanostructured adsorbent for environmental remediation:a review[J]. Cellulose, 2017,24(3):1171-1197.
    [8] KLEMM D, CRANSTON E D, FISCHER D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science:Today’s state[J]. Materials Today, 2018, 21(7):720-748.
    [9] ZHU H, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J].Chemical Reviews, 2016, 116(16):9305-9374.
    [10] P??KK?M, ANKERFORS M, KOSONEN H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J].Biomacromolecules, 2007, 8(6):1934-1941.
    [11] HABIBI Y, GOFFIN A L, SCHILTZ N, et al. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ringopening polymerisation[J]. Journal of Materials Chemistry, 2008, 18(41):5002-5010.
    [12] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses:a new family of nature-based materials[J]. Angewandte Chemie, 2011, 50(24):5438-5466.
    [13] KATRINA P Y S, YEAN L P, SHEE K M. Nanocellulose:recent advances and its prospects in environmental remediation[J]. Beilstein Journal of Nanotechnology, 2018, 9:2479-2498.
    [14] MARZOUGUI Z, DAMAK M, ELLEUCH B, et al. Occurrence and enhanced removal of heavy metals in industrial wastewater treatment plant using coagulation-flocculation process[C]//Euro-Mediterranean Conference for Environmental Integration, Springer, Cham, 2017:535-538.
    [15] MALEKI H, HüSING N. 16-Aerogels as promising materials for environmental remediation——a broad insight into the environmental pollutants removal through adsorption and(photo)catalytic processes[J]. New Polymer Nanocomposites for Environmental Remediation,2018:389-436.
    [16] HOKKANEN S, REPO E, SILLANP??M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose[J]. Chemical Engineering Journal, 2013, 223(3):40-47.
    [17] HOKKANEN S, REPO E, SUOPAJ?RVI T, et al. Adsorption of Ni(Ⅱ), Cu(Ⅱ)and Cd(Ⅱ)from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014, 21(3):1471-1487.
    [18] GENG B, WANG H, WU S, et al. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(Ⅱ)ions from water[J]. ACS Sustainable Chemistry&Engineering, 2017, 5(12):11715-11726.
    [19] LIU P, BORRELL P F, BO?I?M, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+and Fe3+from industrial effluents[J]. Journal of Hazardous Materials, 2015,294:177-185.
    [20] YAO C, WANG F, CAI Z, et al. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions[J]. RSC Advances, 2016, 6(95):92648-92654.
    [21] KARDAM A, RAJ K R, SRIVASTAVA S, et al. Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution[J]. Clean Technologies&Environmental Policy, 2014, 16(2):385-393.
    [22] SINGH K, ARORA J K, SINHA T J M, et al. Functionalization of nanocrystalline cellulose for decontamination of Cr(Ⅲ)and Cr(Ⅵ)from aqueous system:computational modeling approach[J]. Clean Technologies&Environmental Policy, 2014, 16(6):1179-1191.
    [23]侯淑娜,苏巧权,林春香.纳米纤维素的改性及应用[J].中华纸业,2017, 38(22):11-17.HOU S N, SU Q Q, LIN C X. Modification and application of nanocellulose[J]. China Pulp&Paper Industry, 2017, 38(22):11-17.
    [24] PUTRO J N, SANTOSO S P, ISMADJI S, et al. Investigation of heavy metal adsorption in binary system by nanocrystalline cellulosebentonite nanocomposite:improvement on extended Langmuir isotherm model[J]. Microporous&Mesoporous Materials, 2017, 246:166-177.
    [25] IM W, LEE S, ABHARI A R, et al. Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils[J].Cellulose, 2018, 25(2):1-11.
    [26] ZHU C, SOLDATOV A, MATHEW A P. Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu(Ⅱ)onto TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2017, 9(22):7419-7428.
    [27] LIU P, OKSMAN K, MATHEW A P. Surface adsorption and selfassembly of Cu(Ⅱ)ions on TEMPO-oxidized cellulose nanofibers in aqueous media[J]. Journal of Colloid&Interface Science, 2016, 464:175-182.
    [28] ANIRUDHAN T S, NIMA J, DIVVA P L. Adsorption of chromium(Ⅵ)from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups[J]. Applied Surface Science, 2013, 279:441-449.
    [29] MIN S H, HAN J S, SHIN E W, et al. Improvement of cadmium ion removal by base treatment of juniper fiber[J]. Water Research, 2004,38(5):1289-1295.
    [30] HUANG C F, CHEN J K, TSAI T Y, et al. Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP[J]. Polymer, 2015, 72:395-405.
    [31] SIRVI?J A, HASA T, LEIVISK?T, et al. Bisphosphonate nanocellulose in the removal of vanadium(Ⅴ)from water[J]. Cellulose,2015, 23(1):689-697.
    [32] EYLEY S, THIELEMANS W. Surface modification of cellulose nanocrystals[J]. Frontiers of Chemical Engineering in China, 2007, 1(3):228-232.
    [33] DONIA A M, YOUSIF A M, ATIA A A, et al. Preparation and characterization of modified cellulose adsorbents with high surface area and high adsorption affinity for Hg(Ⅱ)[J]. Journal of Dispersion Science&Technology, 2014, 35(3):380-389.
    [34] XU Q, WANG Y, JIN L, et al. Adsorption of Cu(Ⅱ), Pb(Ⅱ)and Cr(Ⅵ)from aqueous solutions using black wattle tannin-immobilized nanocellulose[J]. Journal of Hazardous Materials, 2017, 339:91-99.
    [35] WAFA M, SAMI B. Poly(methacylic acid-co-maleic acid)grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers, 2015, 126:199-207.
    [36] O'CONNELL D W, BIRKINSHAW C, O'DWYER T F. Heavy metal adsorbents prepared from the modification of cellulose:a review[J].Bioresour. Technol., 2008, 99(15):6709-6724.
    [37] AOKI N, FUKUSHIMA K, KURAKATA H, et al. 6-Deoxy-6-mercaptocellulose and its S-substituted derivatives as sorbents for metal ions[J]. Reactive&Functional Polymers, 1999, 42(3):223-233.
    [38] VEN?L?INEN S H, HARTIKAINEN H. Resource-efficient purification of acidic multi-metal process water by means of anionic nanofibrillated cellulose[J]. Journal of Cleaner Production, 2018, 185:516-522.
    [39] ZHANG X, ZHAO J, CHENG L, et al. Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+adsorption[J]. RSC Advances, 2014, 4(98):55195-55201.
    [40] LIU P, SEHAQUI H, TINGAUT P, et al. Cellulose and chitin nanomaterials for capturing silver ions(Ag+)from water via surface adsorption[J]. Cellulose, 2014, 21(1):449-461.
    [41] SUOPAJ?RVI T, LIIMATAINEN H, KARJALAINEN M, et al. Lead adsorption with sulfonated wheat pulp nanocelluloses[J]. Journal of Water Process Engineering, 2015, 5:136-142.
    [42] YANG R, AUBRECHT K B, MA H, et al. Thiol-modified cellulose nanofibrous composite membranes for chromium(Ⅵ)and lead(Ⅱ)adsorption[J]. Polymer, 2014, 55(5):1167-1176.
    [43] SRIVASTAVA S, KARDAM A, RAJ K R. Nanotech reinforcement onto cellulosic fibers:green remediation of toxic metals[J].International Journal of Green Nanotechnology, 2012, 4(1):46-53.
    [44] MA H, HSIAO B S, CHU B. Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+in water[J]. ACS Macro Letters, 2013, 1(1):213-216.
    [45] ZHANG N, ZANG G L, SHI C, et al. A novel adsorbent TEMPOmediated oxidized cellulose nanofibrils modified with PEI:Preparation, characterization, and application for Cu(Ⅱ)removal[J].Journal of Hazardous Materials, 2016, 316:11-18.
    [46] MAATAR W, BOUFI S. Poly(methacylic acid-co-maleic acid)grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers, 2015, 126:199-207.
    [47] CHITPONG N, HUSSON S M. Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters[J]. Journal of Membrane Science, 2017, 523:418-429.
    [48] DICKHOUT J M, MORENO J, BIESHEUVEL P M, et al. Produced water treatment by membranes:a review from a colloidal perspective[J]. Journal of Colloid&Interface Science, 2017, 487:523-534.
    [49] YING Y, YING W, LI Q, et al. Recent advances of nanomaterialbased membrane for water purification[J]. Applied Materials Today,2017, 7:144-158.
    [50] KIM S, CHU K H, PARK C M, et al. Removal of contaminants of emerging concern by membranes in water and wastewater:a review[J].Chemical Engineering Jornal, 2018, 335:896-914.
    [51] KARIM Z, CLAUDPIERRE S, GRAHN M, et al. Nanocellulose based functional membranes for water cleaning:Tailoring of mechanical properties, porosity and metal ion capture[J]. Journal of Membrane Science, 2016, 514:418-428.
    [52] MOHAMMED N, GRISHKEWICH N, TAM K C. Cellulose nanomaterials:promising sustainable nanomaterials for application in water/wastewater treatment processes[J]. Environmental Science Nano,2018, 5:623-658.
    [53] ABOU-ZEID R E, KHIARI R, EL-WAKIL N, et al. Current state and new trends in the use of cellulose nanomaterials for wastewater treatment[J]. Biomacromolecules, 2019, 20(2):573-597.
    [54] MAZHAR U I, ULLAH MW, KHAN S, et al. Recent advancement in cellulose based nanocomposite for addressing environmental challenges[J]. Recent Patents on Nanotechnology, 2016, 10(3):169-180.
    [55] FANG Z, ZHU H, BAO W, et al. Highly transparent paper with tunable haze for green electronics[J]. Energy&Environmental Science, 2014, 7(10):3313-3319.
    [56] FANG Z, ZHU H, YUAN Y, et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells[J]. Nano Letters, 2014, 14(2):765-773.
    [57] LI M, WU Z, LUO M, et al. Highly hydrophilic and anti-fouling cellulose thin film composite membrane based on the hierarchical poly(vinyl alcohol-co-ethylene)nanofiber substrate[J]. Cellulose, 2015, 22(4):2717-2727.
    [58] ZHU Q, WANG Y, LI M, et al. Activable carboxylic acid functionalized crystalline nanocellulose/PVA-co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions[J]. Separation&Purification Technology, 2017, 186:70-77.
    [59] FACCHI D P, CAZETTA A L, CANESIN E A, et al. New magnetic chitosan/alginate/Fe3O4@SiO2hydrogel composites applied for removal of Pb(Ⅱ)ions from aqueous systems[J]. Chemical Engineering Journal,2017, 337:595-608.
    [60] FRANCE K J D, HOARE T, CRANSTON E D. A review of hydrogels and aerogels containing nanocellulose[J]. Chemistry of Materials,2017, 29(11):4609-4631.
    [61] NASCIMENTO D M, NUNES Y L, FIGUEIRêDO M C B, et al.Nanocellulose nanocomposite hydrogels:technological and environmental issues[J]. Green Chemistry, 2018, 20:2428-2448.
    [62] LI J, XU Z, WU W, et al. Nanocellulose/poly(2-(dimethylamino)ethyl methacrylate)interpenetrating polymer network hydrogels for removal of Pb(Ⅱ)and Cu(Ⅱ)ions[J]. Colloids&Surfaces A:Physicochemical&Engineering Aspects, 2018, 538:474-480.
    [63] WANG D C, YU H Y, FAN X, et al. High aspect ratio carboxylated cellulose nanofibers crosslinked to robust aerogels for superabsorptionflocculants:paving way from nanoscale to macroscale[J]. ACS Applied Materials&Interfaces, 2018, 10(24):20755-20766.
    [64] QIAN Z, WANG Z, ZHAO N, et al. Aerogels derived from polymer nanofibers and their applications[J]. Macromolecular Rapid Communications, 2018, 39(14):1700724.
    [65] LI J, ZUO K, WU W, et al. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(Ⅱ)and Pb(Ⅱ)[J]. Carbohydrate Polymers, 2018, 196:376-384.
    [66] ZHENG Q, CAI Z, GONG S. Green synthesis of polyvinyl alcohol(PVA)-cellulose nanofibril(CNF)hybrid aerogels and their use as superabsorbents[J]. Journal of Materials Chemistry A, 2014, 2(9):3110-3118.
    [67] ZHAO J, ZHANG X, HE X, et al. Super biosorbent from dendrimer poly(amidoamine)-grafted cellulose nanofibril aerogels for effective removal of Cr(Ⅵ)[J]. Journal of Materials Chemistry A, 2015, 3(28):14703-14711.
    [68] RAM B, CHAUHAN G S. New spherical nanocellulose and thiolbased adsorbent for rapid and selective removal of mercuric ions[J].Chemical Engineering Journal, 2018, 331:587-596.
    [69] RONG L, ZHU Z, WANG B, et al. Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+from aqueous solutions[J].Cellulose, 2018, 25(5):3025-3035.
    [70] ZHU C, LIU P, MATHEW A P. Self-assembled TEMPO cellulose nanofibers-graphene oxide based biohybrids for water purification[J].ACS Applied Materials&Interfaces, 2017, 9(24):21048-21058.
    [71] BO S, REN W, LEI C, et al. Flexible and porous cellulose aerogels/zeolitic imidazolate framework(ZIF-8)hybrids for adsorption removal of Cr(Ⅳ)from water[J]. Journal of Solid State Chemistry, 2018, 262:135-141.
    [72] ZHU H, YANG X, CRANSTON E D, et al. Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications[J]. Advanced Materials, 2016, 28(35):7652-7657.
    [73] HONG H J, LIM J S, HWANG J Y, et al. Carboxymethlyated cellulose nanofibrils(CMCNFs)embedded in polyurethane foam as a modular adsorbent of heavy metal ions[J]. Carbohydrate Polymers, 2018, 195:136-142.
    [74] HEBBAR R S, ISLOOR A M, ANANDA K, et al. Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal.[J].Journal of Materials Chemistry A, 2016, 4(3):764-774.
    [75] MA J, HE Y, ZENG G, et al. Bio-inspired method to fabricate polydopamine/reduced graphene oxide composite membranes for dyes and heavy metal ion removal[J]. Polymers for Advanced Technologies,2018, 29(2):941-950.
    [76] HU L B, KONG W Q, WANG C W, et al. Muscle-inspired highly anisotropic, strong,ion-conductive hydrogels[J]. Advanced Materials,2018, 30(39). DOI:10.1002/adma.201801934.
    [77] BETHKE K, PALANT?KEN S, ANDREI V, et al. Functionalized cellulose for water purification, antimicrobial applications, and sensors[J]. Advanced Functional Materials, 2018, 28(23):1800409.
    [78]杨全岭,杨俊伟,石竹群,等.纳米纤维素基导电材料及其在电子器件领域的研究进展[J].林业工程学报, 2018, 3(3):1-11..YANG Q L, YANG J W, SHI Z Q, et al. Recent progress of nanocellulose-based electroconductive materials and their applications as electronic devices[J]. Journal of Forestry Engineering, 2018, 3(3):1-11.
    [79] LUO W, XIAO G, TIAN F, et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater[J]. Energy&Environmental Science, 2019, 12(2):607-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700