用户名: 密码: 验证码:
水蚀风蚀交错带退耕草坡地土壤酶活性和碳氮矿化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Enzyme Activity, Carbon and Nitrogen Mineralization of Soil in the Abandoned Sloping Cropland in Wind-Water Erosion Crisscross Region
  • 作者:孔维波 ; 石芸 ; 姚毓菲 ; 邵明安 ; 魏孝荣
  • 英文作者:KONG Weibo;SHI Yun;YAO Yufei;SHAO Mingan;WEI Xiaorong;Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education and Chinese Academy of Sciences;University of Chinese Academy of Sciences;Agricultural Technology Center;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University;
  • 关键词:水蚀风蚀交错带 ; 退耕草坡地 ; 土壤酶活性 ; 碳氮矿化特征 ; 空间自相关性
  • 英文关键词:water-wind erosion crisscross region;;abandoned grassland;;soil enzyme activity;;carbon and nitrogen mineralization;;spatial autocorrelation
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:中国科学院教育部水土保持与生态环境研究中心;中国科学院大学;陕西省定边县农技中心;西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室;
  • 出版日期:2019-03-29
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.133
  • 基金:国家自然科学基金(41622105,41571130082,41571296);; 中国科学院前沿科学重点研究计划(QYZDB-SSW-DQC039)
  • 语种:中文;
  • 页:STBY201902002
  • 页数:9
  • CN:02
  • ISSN:61-1272/P
  • 分类号:5-12+20
摘要
以水蚀风蚀交错带农地退耕后不同演替阶段的长芒草(Stipa bungeana)和苜蓿—铁杆蒿(Medicago sativa—Artemisia sacrorum)坡地为对象,分析了退耕坡地土壤酶活性与碳氮矿化及其空间分布特征。结果表明:(1)退耕坡地主要土壤养分含量(有机碳、全氮和全磷)不受坡位(除苜蓿—铁杆蒿坡地的全磷含量外)影响,长芒草坡地有机碳(上、中和下坡位)和全氮含量(中和下坡位)高于苜蓿—铁杆蒿坡地。(2)随坡位的降低,长芒草坡地土壤脲酶和淀粉酶活性显著增加,蔗糖酶和碱性磷酸酶活性无显著差异。而苜蓿—铁杆蒿坡地土壤脲酶和淀粉酶活性无显著差异,蔗糖酶活性显著降低。群落类型对碱性磷酸酶活性的影响与坡位无关,对脲酶和蔗糖酶活性的影响则与坡位有关。(3)土壤有机碳矿化量和矿化速率常数在长芒草坡地显著高于苜蓿—铁杆蒿坡地,且不受坡位影响。两种群落土壤氮素矿化均由硝化作用主导,长芒草坡地土壤氮素矿化量和硝化量随坡位降低而显著增加,而苜蓿—铁杆蒿坡地则相反。(4)随苜蓿—铁杆蒿群落向长芒草群落演替,蔗糖酶和碱性磷酸酶活性空间自相关性增强,脲酶和淀粉酶活性空间自相关性减弱,但仍具有强烈空间自相关性,碳氮矿化指标的空间自相关性增强。上述结果表明:在评估退耕草坡地主要土壤过程及其空间分布时,需要考虑草地群落类型或者群落演替阶段的影响。
        We analyzed soil enzyme activities, carbon and nitrogen mineralization and their spatial distribution characteristics at different succession stages(Stipa bungeana and Medicago sativa—Artemisia sacrorum) of abandoned slope lands in wind-water erosion crisscross region. The results showed that:(1) soil organic carbon, total nitrogen and phosphorus contents were not affected by slope position(except for total phosphorus in M. sativa—A. sacrorum slope land), and the contents of soil organic carbon(on upper, middle and lower slope) and total nitrogen(on middle and lower slope) were significantly higher in S. bungeana slope land than those in M. sativa—A. sacrorum slope land.(2) Soil urease and amylase activities increased significantly but no significant difference in sucrase and alkaline phosphatase activities in S. bungeana slope land was observed, and no significant difference in activities of soil urease and amylase was found but soil sucrase enzyme activity decreased significantly in M. sativa—A. sacrorum slope land from upper to lower slope position; the effect of grassland type on soil urease and sucrase enzyme activities was related to slope position, but effect of grassland type soil alkaline phosphatase activity was not related to slope position;(3) soil carbon mineralization and the rate constant of mineralization were significantly higher in S. bungeana slope land than those in M. sativa—A. sacrorum slope land and not affected by slope position. Nitrification dominated the mineralization in both slope lands; soil nitrification and mineralization increased significantly from upper to lower slope in S. bungeana slope land, while the opposite trend was observed in M. sativa—A. sacrorum slope land;(4) with the succession from M. sativa—A. sacrorum to S. bungeana stage, the spatial autocorrelation of soil sucrase and alkaline phosphatase activities and soil carbon and nitrogen mineralization index increased, while spatial autocorrelation of soil urease and amylase activities decreased, but a strong spatial autocorrelation still existed. These results indicate that the effects of grassland types or succession stages should be considered in assessing the soil biogeochemical processes and their spatial distribution of abandoned lands.
引文
[1]付晓莉.水蚀风蚀交错区土壤水、碳、氮、磷分布及有关过程对植被类型的响应[D].陕西杨凌:中国科学院教育部水土保持与生态环境研究中心,2010.
    [2]张燕江,邱莉萍,张兴昌,等.黄土高原农牧交错带退耕坡地苜蓿—铁杆蒿群落养分分布特征[J].干旱地区农业研究,2015,33(5):211-216.
    [3]赵哈林,赵学勇,张铜会,等.北方农牧交错带的地理界定及其生态问题[J].地球科学进展,2002,17(5):739-747.
    [4]Chen Y P, Wang K B, Lin Y S, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015,8(10):739-741.
    [5]王辽宏,邱莉萍,高海龙,等.农牧交错带本氏针茅坡地土壤—植物系统磷素分布特征[J].植物营养与肥料学报,2013,19(5):1192-1199.
    [6]张平仓.水蚀风蚀交错带水风两相侵蚀时空特征研究:以神木六道沟小流域为例[J].土壤侵蚀与水土保持学报,1999,5(3):93-96.
    [7]张婷,陈云明,武春华.黄土丘陵区铁杆蒿群落和长芒草群落地上生物量及土壤养分效应[J].中国水土保持科学,2011,9(5):91-97.
    [8]刘建,邱莉萍,程积民,等.黄土高原水蚀风蚀交错区5种典型草地群落土壤酶活性的研究[J].草地学报,2017,25(1):32-37.
    [9]沈芳芳,袁颖红,樊后保,等.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报,2012,32(2):517-527.
    [10]Pajares P, Gallardo G F, Masciandaro M, et al. Enzyme activity as an indicator of soil quality changes in degraded cultivated Acrisols in the Mexican Trans-volcanic Belt[J]. Land Degradation & Development, 2011,22(3):373-381.
    [11]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [12]Zhao N, Li X G. Effects of aspect-vegetation complex on soil nitrogen mineralization and microbial activity on the Tibetan Plateau[J]. Catena, 2017,155:1-9.
    [13]Nunes D A D, Gama-Rodrigues E F, Barreto P A B, et al. Carbon and nitrogen mineralization in soil of leguminous trees in a degraded pasture in northern Rio de Janeiro, Brazil[J]. Journal of Forestry Research, 2016,27(1):91-99.
    [14]胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间变异的尺度性研究[J].农业工程学报,2005,21(8):11-16.
    [15]陈立明,满秀玲.小兴安岭谷地云冷杉林土壤酶活性的异质性[J].森林工程,2010,26(1):1-6.
    [16]贺金红,廖允成,胡兵辉,等.黄土高原坡耕地退耕还林(草)的生态经济效应研究[J].农业现代化研究,2006,27(2):110-114.
    [17]鲍士旦.土壤农化分析[M].北京:中国农业出版社,1986.
    [18]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [19]王玉红,马天娥,魏艳春,等.黄土高原半干旱草地封育后土壤碳氮矿化特征[J].生态学报,2017,37(2):378-386.
    [20]Li H, Reynolds J F. On definition and quantification of heterogeneity[J]. Oikos, 1995,73(2):280-284.
    [21]Maag M, Vinther F P. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures[J]. Applied Soil Ecology, 1996,4(1):5-14.
    [22]曲国辉,郭继勋.松嫩平原不同演替阶段植物群落和土壤特性的关系[J].草业学报,2003,12(1):18-22.
    [23]景福军,张德罡,尚占环,等.黄土高原弃耕地不同地形下植物群落演替初期的群落结构及多样性研究[J].甘肃农业大学学报,2005,40(2):233-238.
    [24]Liu X R, Dong Y S, Ren J Q, et al. Drivers of soil net nitrogen mineralization in the temperate grasslands in Inner Mongolia, China[J]. Nutrient Cycling in Agroecosystems, 2010,87(1):59-69.
    [25]程积民,井赵斌,金晶炜,等.黄土高原半干旱区退化草地恢复与利用过程研究[J].中国科学:生命科学,2014,44(3):267-279.
    [26]成毅,安韶山,马云飞.宁南山区不同坡位土壤微生物生物量和酶活性的分布特征[J].水土保持研究,2010,17(5):148-153.
    [27]邱莉萍,张兴昌,程积民.坡向坡位和撂荒地对云雾山草地土壤酶活性的影响[J].草业学报,2007,16(1):87-93.
    [28]Aon M A, Colaneri A C. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001,18(3):255-270.
    [29]Grayston S J, Prescott C E. Microbial communities in forest floors under four tree species in coastal British Columbia[J]. Soil Biology & Biochemistry, 2005,37(6):1157-1167.
    [30]Gr?nli K E, Frosteg?rd A, Bakken L R, et al. Nutrient and carbon additions to the microbial soil community and its impact on tree seedlings in a boreal spruce forest[J]. Plant and Soil, 2005,278(1):275-291.
    [31]秦燕.贺兰山西坡不同草地类型土壤酶活性特征[D].兰州:兰州大学,2007.
    [32]安韶山,黄懿梅,刘梦云,等.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价[J].水土保持研究,2005,12(3):31-34.
    [33]杨佳佳.延河流域植被类型对土壤酶活性和土壤碳氮形态的影响[D].陕西杨凌:西北农林科技大学,2014.
    [34]Elfstrand S, Hedlund K, Martensson A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring[J]. Applied Soil Ecology, 2007,35(3):610-621.
    [35]Pinay G, Barbera P, Carreras P A, et al. Impact of atmospheric CO2 and plant life forms on soil microbial activities[J]. Soil Biology & Biochemistry, 2007,39(1):33-42.
    [36]李顺姬,邱莉萍,张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J].生态学报,2010,30(5):1217-1226.
    [37]Saggar S, Yeates G W, Shepherd T G. Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand[J]. Soil & Tillage Research, 2001,58(1):55-68.
    [38]Eze S, Palmer S M, Chapman P J. Soil organic carbon stock and fractional distribution in upland grasslands[J]. Geoderma, 2018, 314:175-183.
    [39]黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709-714.
    [40]Wei X, Reich P B, Hobbie S E, et al. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem[J]. Global Change Biology, 2017,23(11):4717-4727.
    [41]Wei X, Shao M, Fu X, et al. The effects of land use on soil N mineralization during the growing season on the northern Loess Plateau of China[J]. Geoderma, 2011,160(3):590-598.
    [42]Tischer A, Blagodatskaya E, Hamer U. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions[J]. Soil Biology & Biochemistry, 2015,89:226-237.
    [43]Zhao H, Zhang X, Xu S, et al. Effect of freezing on soil nitrogen mineralization under different plant communities in a semi-arid area during a non-growing season[J]. Applied Soil Ecology, 2010,45(3):187-192.
    [44]朱新萍,贾宏涛,郑春霞,等.高产棉田土壤碱性磷酸酶及脲酶空间变异特征分析[J].干旱区研究,2012,29(4):586-591.
    [45]朱剑兴,王秋凤,何念鹏,等.内蒙古不同类型草地土壤氮矿化及其温度敏感性[J].生态学报,2013,33(19):6320-6327.
    [46]Wei X, Huang M, Shao M, et al. Shrubs increase soil resources heterogeneity along semiarid grass slopes in the Loess Plateau[J]. Journal of Arid Environments, 2013,88(1):175-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700