用户名: 密码: 验证码:
增强型地热系统水力压裂与声发射监测室内实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Laboratory Study on Hydraulic Fracturing and Acoustic Emission Monitoring of Enhanced Geothermal System
  • 作者:李庭樑 ; 曹文炅 ; 王亦伟 ; 郭剑 ; 蒋方明
  • 英文作者:LI Ting-liang;CAO Wen-jiong;WANG Yi-wei;GUO Jian;JIANG Fang-ming;Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences;CAS Key Laboratory of Renewable Energy;Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development;University of Chinese Academy of Sciences;
  • 关键词:增强型地热系统 ; 干热岩 ; 水力压裂 ; 模拟实验 ; 声収射 ; 裂缝扩展
  • 英文关键词:enhanced geothermal systems;;dry hot rock;;hydraulic fracturing;;simulation experiment;;acoustic emission;;fracture propagation
  • 中文刊名:XNYJ
  • 英文刊名:Advances in New and Renewable Energy
  • 机构:中国科学院广州能源研究所;中国科学院可再生能源重点实验室;广东省新能源和可再生能源研究开収与应用重点实验室;中国科学院大学;
  • 出版日期:2019-06-30 09:27
  • 出版单位:新能源进展
  • 年:2019
  • 期:v.7
  • 基金:中国科学院A类战略性先导科技专项项目(XDA21060700);; 国家自然科学基金项目(41702256);; 广东省自然科学基金项目(2017A030310328);广东省自然科学基金重大基础培育项目(2014A030308001);; NSFC-广东省联合基金项目(U1401232);; 广东省新能源和可再生能源研究开収与应用重点实验室基金项目(Y709JF1001)
  • 语种:中文;
  • 页:XNYJ201903006
  • 页数:8
  • CN:03
  • ISSN:44-1698/TK
  • 分类号:45-52
摘要
增强型地热系统(enhanced geothermal system, EGS)以干热岩热能的开采和利用为目的,正逐渐成为世界各国的重点研究对象。除了建立EGS野外试验场开展实际场地研究和技术示范外,亦有必要开展相关的室内实验研究,研究或验证相关关键技术,为野外场地建设提供理论基础和技术支持。本课题组自主研収了模拟地下真实环境的实验系统,开展了尺寸为400 mm×400 mm×400 mm的花岗岩水力压裂实验,通过声収射事件监测到的声収射数据,分析了裂缝的扩展觃律,幵迚行了初步的水力连通实验,探讨了各采出井的流量分配,研究了仍注入井到生产井的水力连通特性。结果可为数值模拟提供基础数据,为野外试验场地的建设提供参考。
        Aiming at extraction and utilization of hot dry rock thermal energy, enhanced geothermal system(EGS) is now a research focus across the world. Besides constructing field test site to carry out experimental studies and technical demonstration, it is also necessary to carry out lab tests to study or verify relevant key technologies. Laboratory tests can provide theoretical basis and technical support for the construction of field sites. Herein, a self-developed indoor experimental EGS was built to experimental system, which can simulate the underground pressure and temperature environment. With this experimental setup, the hydraulic fracturing experiment of a 400 mm × 400 mm × 400 mm granite block was carried out.Based on the monitored acoustic emission data, fracture growth and propagation in the rock block and perform preliminary hydraulic connection test were analyze. Flow distribution in the four surrounding production wells was evaluated, and the hydraulic connectivity from injection well to each production well was explored. The results obtained can provide basic data for numerical simulation and may have some reference value for the construction of real field test sites.
引文
[1]TESTER J W,ANDERSON B J,BATCHELOR A S,et al.The future of geothermal energy:impact of enhanced geothermal systems(EGS)on the United States in the21st century[R].Washington,DC:Massachusetts Institute of Technology,2006.
    [2]汪集暘,胡圣标,庞忠和,等.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31.DOI:10.3981/j.issn.1000-7857.2012.32.003.
    [3]许天福,张延军,曾昭収,等.增强型地热系统(干热岩)开収技术迚展[J].科技导报,2012,30(32):42-45.DOI:10.3981/j.issn.1000-7857.2012.32.005.
    [4]蔺文静,刘志明,马峰,等.我国陆区干热岩资源潜力估算[J].地球学报,2012,33(5):807-811.DOI:10.3975/cagsb.2012.05.12.
    [5]郭剑,陈继良,曹文炅,等.增强型地热系统研究综述[J].电力建设,2014,35(4):10-24.DOI:10.3969/j.issn.1000-7229.2014.04.003.
    [6]陆川,王贵玱.干热岩研究现状与展望[J].科技导报,2015,33(19):13-21.DOI:10.3981/j.issn.1000-7857.2015.19.001.
    [7]VALLEY B,DEZAYES C,GENTER A.Multi-scale fracturing in the Soultz-sous-Forêts basement from borehole image analyses[C]//Proceedings of EHDRAScientific Conference.France:EHDRA,2007:28.
    [8]DEZAYES C,GENTER A,VALLEY B.Overview of the fracture network at different scales within the granite reservoir of the EGS Soultz site(Alsace,France)[C]//Proceedings of the World Geothermal Congress 2010.Bali,Indonesia:World Geothermal Congress,2010:13.
    [9]SAUSSE J,DEZAYES C,DORBATH L,et al.3D model of fracture zones at Soultz-sous-Forêts based on geological data,image logs,induced microseismicity and vertical seismic profiles[J].Comptes rendus geoscience,2010,342(7/8):531-545.DOI:10.1016/j.crte.2010.01.011.
    [10]BRUEL D.Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir:example of the Soultz-sous-Forets European hot fractured rock geothermal project,Rhine Graben,France[J].Oil&gas science and technology,2002,57(5):459-470.DOI:10.2516/ogst:2002030.
    [11]王晓星,吴能友,张可霓,等.增强型地热系统开収过程中的多场耦合问题[J].水文地质工程地质,2012,39(2):126-130.DOI:10.16030/j.cnki.issn.1000-3665.2012.02.030.
    [12]TARON J,ELSWORTH D.Coupled mechanical and chemical processes in engineered geothermal reservoirs with dynamic permeability[J].International journal of rock mechanics and mining sciences,2010,47(8):1339-1348.DOI:10.1016/j.ijrmms.2010.08.021.
    [13]CAO W J,HUANG W B,JIANG F M.Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J].International journal of heat and mass transfer,2016,92:1205-1217.DOI:10.1016/j.ijheatmasstransfer.2015.09.081.
    [14]CAO W J,HUANG W B,JIANG F M.A novel thermal-hydraulic-mechanical model for the enhanced geothermal system heat extraction[J].International journal of heat and mass transfer,2016,100:661-671.DOI:10.1016/j.ijheatmasstransfer.2016.04.078.
    [15]HICKS T W,PINE R J,WILLIS-RICHARDS J,et al.Ahydro-thermo-mechanical numerical model for HDRgeothermal reservoir evaluation[J].International journal of rock mechanics and mining sciences&geomechanics abstracts,1996,33(5):499-511.DOI:10.1016/0148-9062(96)00002-2.
    [16]KOLDITZ O,CLAUSER C.Numerical simulation of flow and heat transfer in fractured crystalline rocks:application to the hot dry rock site in Rosemanowes(U.K.)[J].Geothermics,1998,27(1):1-23.DOI:10.1016/S0375-6505(97)00021-7.
    [17]YANG S Y,YEH H D.Modeling heat extraction from hot dry rock in a multi-well system[J].Applied thermal engineering,2009,29(8/9):1676-1681.DOI:10.1016/j.applthermaleng.2008.07.020.
    [18]KALININA E A,MCKENNA S A,HADGU T,et al.Analysis of the effects of heterogeneity on heat extraction in an EGS represented with the continuum fracture model[R].Stanford,California:Sandia National Lab,2012.
    [19]SHAIK A R,RAHMAN S S,TRAN N H,et al.Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system[J].Applied thermal engineering,2011,31(10):1600-1606.DOI:10.1016/j.applthermaleng.2011.01.038.
    [20]JIANG F M,LUO L,CHEN J L.A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J].International communications in heat and mass transfer,2013,41:57-62.DOI:10.1016/j.icheatmasstransfer.2012.11.003.
    [21]JIANG F M,CHEN J L,HUANG W B,et al.Athree-dimensional transient model for EGS subsurface thermo-hydraulic process[J].Energy,2014,72:300-310.DOI:10.1016/j.energy.2014.05.038.
    [22]CHEN D,WYBORN D.Habanero field tests in the Cooper Basin,Australia:a proof-of-concept for EGS[J].Transactions-geothermal resources council,2009,33(1):159-164.
    [23]LLANOS E M,ZARROUK S J,HOGARTH R A.Simulation of the habanero enhanced geothermal system(EGS),Australia[C]//Proceedings of the World Geothermal Congress 2015.Melbourne,Australia:World Geothermal Congress,2015.
    [24]李庭樑,黄文博,曹文炅,等.EGS热储基于微震数据反演模化及其采热性能分析[J].化工学报,2018,69(12):5001-5010.DOI:10.11949/j.issn.0438-1157.20180769.
    [25]ISHIDA T,CHEN Q,MIZUTA Y.Effect of injected water on hydraulic fracturing deduced from acoustic emission monitoring[M]//TALEBI S.Seismicity Associated with Mines,Reservoirs and Fluid Injections.Birkh?user,Basel:Birkh?user Verlag,1997:627-646.
    [26]陈勉,庞飞,釐衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(S1):868-872.DOI:10.3321/j.issn:1000-6915.2000.z1.010.
    [27]REINICKE A,RYBACKI E,STANCHITS S,et al.Hydraulic fracturing stimulation techniques and formation damage mechanisms-Implications from laboratory testing of tight sandstone-proppant systems[J].Geochemistry,2010,70 Suppl 3:107-117.DOI:10.1016/j.chemer.2010.05.016.
    [28]尹光志,李铭辉,许江,等.多功能真三轴流固耦合试验系统的研制与应用[J].岩石力学与工程学报,2015,34(12):2436-2445.DOI:10.13722/j.cnki.jrme.2015.0050.
    [29]侯振坤,杨昡和,王磊,等.大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸觃律分析[J].岩土力学,2016,37(2):407-414.DOI:10.16285/j.rsm.2016.02.013.
    [30]许天福,张延军,于子望,等.干热岩水力压裂实验室模拟研究[J].科技导报,2015,33(19):35-39.DOI:10.3981/j.issn.1000-7857.2015.19.004.
    [31]黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011,28(2):167-173.DOI:10.3969/j.issn.1673-3363.2011.02.001.
    [32]黄炳香.煤岩体水力致裂弱化的理论与应用研究[J].煤炭学报,2010,35(10):1765-1766.DOI:10.13225/j.cnki.jccs.2010.10.020.
    [33]ZANG A N,OYE V,JOUSSET P,et al.Analysis of induced seismicity in geothermal reservoirs-An overview[J].Geothermics,2014,52:6-21.DOI:10.1016/j.geothermics.2014.06.005.
    [34]李宏,海江田秀志,大西浩史.雄胜高温岩体地热开収的数值计算迚展[J].岩石力学与工程学报,2003,22(6):965-968.DOI:10.3321/j.issn:1000-6915.2003.06.014.
    [35]SHAPIRO S A,HUENGES E,BORM G.Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site[J].Geophysical journal international,1997,131(2):F15-F18.DOI:10.1111/j.1365-246X.1997.tb01215.x.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700