用户名: 密码: 验证码:
中亚热带植被恢复过程中崩岗土壤性质分异特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation in soil property and its response to vegetation restoration in areas of collapse mounds in mid-subtropical China
  • 作者:区晓琳 ; 陈志彪 ; 陈志强 ; 姜超 ; 梁美霞 ; 陈海滨
  • 英文作者:OU Xiaolin;CHEN Zhibiao;CHEN Zhiqiang;JIANG Chao;LIANG Meixia;CHEN Haibin;Key Laboratory for Subtropical Mountain Ecology Ministry of Science and Technology and Fujian Province Funded;College of Geographical Sciences,Fujian Normal University;
  • 关键词:崩岗 ; 土壤性质 ; 养分含量 ; 植被恢复 ; 空间分异
  • 英文关键词:collapse mound(Benggang);;soil property;;nutrient content;;vegetation restoration;;spatial variation
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:湿润亚热带山地生态国家重点实验室培育基地;福建师范大学地理科学学院;
  • 出版日期:2018-12-21 16:37
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划项目(2016YFC0502905);; 福建省科技厅引导性项目(2016Y0024);; 泉州市科技局科技计划项目(2018Z025)
  • 语种:中文;
  • 页:STXB201906032
  • 页数:11
  • CN:06
  • ISSN:11-2031/Q
  • 分类号:307-317
摘要
崩岗是我国南方红壤丘陵山区坡面沟道侵蚀后期发育而成的侵蚀地貌,探讨崩岗系统植被恢复过程中不同部位土壤性质分异特征,对揭示强度侵蚀环境下土壤环境效应以及指导崩岗区生态恢复具有重要借鉴意义。以闽西南长汀县濯田镇黄泥坑崩岗群内植被盖度分别为2%、20%和95%的3处毗邻崩岗为研究对象,研究各崩岗集水坡面、崩壁(顶部、中部及底部)、崩积体(上部和下部)和沟道出口等部位0—20 cm土壤理化性质的分异特征。结果表明:土壤容重、粉粒、pH、速效养分含量均表现为崩岗Ⅲ<崩岗Ⅱ≈崩岗Ⅰ,土壤有机碳、全氮、全磷和全钾含量表现为崩岗Ⅲ>崩岗Ⅱ≈崩岗Ⅰ。从集水坡面至沟道出口,土壤容重和砂粒含量呈增加→减少→增加趋势,粉粒和黏粒含量呈降低变化趋势,集水坡面和崩积体有机碳、全氮、全磷和全钾含量明显高于其他部位,在崩壁顶部及沟道出口最低。从集水坡面至沟道出口,铵态氮和硝态氮含量呈先增加后减少的态势,速效钾含量呈"V"型变化态势,最低值出现在崩壁底部,速效磷和pH呈增加态势。本研究表明,崩岗系统内土壤结构和土壤养分含量总体水平较差,不同侵蚀部位土壤性质存在明显空间差异,自然植被恢复过程对土壤特性有一定的改良效应。
        The term of collapse mound, is called Benggang by local residents, represents the most severe eroded ecosystem in the red soil region of southern China. We studied the response of vegetation restoration on the characteristics of soil properties in different parts of the collapse mound system,which is an important reference to reveal the soil environmental effects under the intensity erosion environment and to guided the ecological restoration in the collapse mound area. Therefore, we selected three adjacent collapse mounds with different vegetation coverage(2%, 20%, and 95%) as the study object. The physicochemical properties of 63 soil sample plots were investigated in 7 sites, including upper catchment, collapsing wall(top, middle, and bottom section), colluvial deposit(upper and lower section), and channel outlet. The variation and correlation of soil properties were also analyzed. The results showed that the soil bulk density, slit content pH, ammonium nitrogen(NH~+_4-N), nitrate nitrogen(NO~-_3-N), available phosphorus(AP), and available potassium(AK) content decreased significantly, while the organic carbon(SOC), total nitrogen(TN), total phosphorus(TP) and total potassium(TK) content increased considerably with process of the vegetation restoration. From the upper catchment to channel outlet(via collapsing wall and colluvial deposit), the soil bulk density and sand content showed up-down-up trend, whereas the content of silt and clay showed decreasing trend. The content of SOC, TN, TP and TK in the upper catchment and the colluvial deposit were significantly higher than that other sites, whereas their contents were lowest in the top collapsing wall and channel outlet, respectively. The spatial distributions of NH~+_4-N and NO~-_3-N content showed downward and upward fluctuating trend, respectively, and the spatial variation of AK content showed a "V" tendency and its lowest content appeared in the bottom of the collapse wall, whereas AP and pH showed a significant increasing trend along with the runoff erosion direction. In summary, the soil structure and nutrient content were poor in the collapse mound ecosystem. and the soil physicochemical properties present obvious spatial differences in different erosion sites, they were improved by natural vegetation restoration.
引文
[1] 曾昭璇,黄少敏.中国自然地理:地貌.北京:科学出版社,1980:32-36.
    [2] 唐克丽.中国水土保持.北京:科学出版社,2004:80-82.
    [3] 孙波.红壤退化阻控与生态修复.北京:科学出版社,2011:309-310.
    [4] Xu J X.Benggang erosion:the influencing factors.CATENA,1996,27(3/4):249-263.
    [5] 梁音,宁堆虎,潘贤章,李德成,张斌.南方红壤区崩岗侵蚀的特点与治理.中国水土保持,2009,(1):31-34.
    [6] 刘希林,张大林.崩岗地貌侵蚀过程三维立体监测研究——以广东五华县莲塘岗崩岗为例.水土保持学报,2015,29(1):26-31.
    [7] 刘希林,张大林.基于三维激光扫描的崩岗侵蚀的时空分析.农业工程学报,2015,31(4):204-211.
    [8] 邓羽松,丁树文,蔡崇法,吕国安.鄂东南崩岗剖面土壤水分特征曲线及模拟.土壤学报,2016,53(2):355-364.
    [9] 邓羽松,丁树文,刘辰明,夏栋,张晓明,吕国安.鄂东南花岗岩崩岗崩壁土壤水分特征研究.水土保持学报,2015,29(4):132-137.
    [10] 蒋芳市,黄炎和,林金石,赵淦,葛宏力,林敬兰.坡度和雨强对崩岗崩积体侵蚀泥沙颗粒特征的影响.土壤学报,2014,51(5):974-982.
    [11] 林金石,庄雅婷,黄炎和,蒋芳市,林敬兰,葛宏力.不同剪切方式下崩岗红土层抗剪特征随水分变化规律.农业工程学报,2015,31(24):106-110.
    [12] Vallauri D R,Aronson J,Barbero M.An analysis of forest restoration 120 years after reforestation on badlands in the Southwestern Alps.Restoration Ecology,2002,10(1):16-26.
    [13] Zuo X A,Zhao X Y,Zhao H L,Zhang T H,Guo Y R,Li Y Q,Huang Y G.Spatial heterogeneity of soil properties and vegetation-soil relationships following vegetation restoration of mobile dunes in Horqin Sandy Land,Northern China.Plant and Soil,2009,318(1/2):153-167.
    [14] Feng X M,Fu B J,Lu N,Zeng Y,Wu B F.How ecological restoration alters ecosystem services:an analysis of carbon sequestration in China′s Loess Plateau.Scientific Reports,2013,3(2846):1-5.
    [15] Xie J S,Guo J F,Yang Z J,Huang Z Q,Chen G S,Yang Y S.Rapid accumulation of carbon on severely eroded red soils through afforestation in subtropical China.Forest Ecology and Management,2013,300:53-59.
    [16] Erktan A,Cécillon L,Graf F,Roumet G,Legout C,Rey F.Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems:combined effects of soil,root traits and plant community characteristics.Plant and Soil,2016,398(1/2):121-137.
    [17] Knops J M H,Tilman D.Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment.Ecology,2000,81(1):88-98.
    [18] Chen Z Q,Chen Z B,Yan X Y,Bai L Y.Stoichiometric mechanisms ofDicranopteris dichotoma growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China.Plant and Soil,2016,398(1/2):367-379.
    [19] 朱鹤健.我国亚热带山地生态系统脆弱区生态恢复的战略思想——基于长汀水土保持11年研究成果.自然资源学报,2013,28(9):1498-1506.
    [20] 唐庄生,安慧,邓蕾,上官周平.荒漠草原沙漠化植物群落及土壤物理变化.生态学报,2016,36(4):991-1000.
    [21] Wang J G,Li Z X,Cai C F,Ma R M.Particle size and shape variation of Ultisol aggregates affected by abrasion under different transport distances in overland flow.CATENA,2014,123:153-162.
    [22] 丘世钧.红土坡地崩岗侵蚀过程与机理.水土保持通报,1994,14(6):31-40.
    [23] 邓羽松,丁树文,蔡崇法,吕国安,夏栋,朱芸.鄂东南崩岗洪积扇土壤物理性质空间分异特征.中国农业科学,2014,47(24):4850-4857.
    [24] 唐国勇,高成杰,李昆.植被恢复对干热河谷退化土壤改良的影响.生态学报,2015,35(15):5157-5167.
    [25] 刘希林,张大林,贾瑶瑶.崩岗地貌发育的土体物理性质及其土壤侵蚀意义——以广东五华县莲塘岗崩岗为例.地球科学进展,2013,28(7):802-811.
    [26] Sheng J A,Liao A Z.Erosion control in South China.CATENA,1997,29(2):211-221.
    [27] Tian H Q,Chen G S,Zhang C,Melillo J M,Hall C A S.Pattern and variation of C:N:P ratios in China′s soils:a synthesis of observational data.Biogeochemistry,2010,98(1/3):139-151.
    [28] Walker T W,Syers J K.The fate of phosphorus during pedogenesis.Geoderma,1976,15(1):1-19.
    [29] Johnson D W,Dijkstra F A,Cheng W.The effects of Glycine max and Helianthus annuus on nutrient availability in two soils.Soil Biology and Biochemistry,2007,39(8):2160-2163.
    [30] Lu M,Yang Y H,Luo Y Q,Fang C M,Zhou X H,Chen J K,Yang X,Li B.Responses of ecosystem nitrogen cycle to nitrogen addition:a meta-analysis.The New Phytologist,2011,189(4):1040-1050.
    [31] 宋蒙亚,李忠佩,刘明,刘满强,江春玉.不同林地凋落物组合对土壤速效养分和微生物群落功能多样性的影响.生态学杂志,2014,33(9):2454-2461.
    [32] Jalali M.Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran.Geoderma,2006,135:63-71.
    [33] Guo J H,Liu X J,Zhang Y,Shen J L,Han W X,Zhang W F,Christie P,Goulding K W T,Vitousek P M,Zhang F S.Significant acidification in major Chinese croplands.Science,2010,327(5968):1008-1010.
    [34] 汪邦稳,夏小林,段剑.侵蚀地形对马尾松林下土壤特性的影响.土壤学报,2016,53(3):808-819.
    [35] 杨玉盛,何宗明,邱仁辉,罗学升.严重退化生态系统不同恢复和重建措施的植物多样性与地力差异研究.生态学报,1999,19(4):490-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700