用户名: 密码: 验证码:
固态流化采掘海洋天然气水合物藏的水平管段固相颗粒运移特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Migration characteristics of solid-phase particles in horizontal pipes in the exploitation of marine gas hydrate reservoirs through solid fluidization
  • 作者:李蜀涛 ; 魏纳 ; 李海涛 ; 庞维新 ; 席永钊 ; 郑利军 ; 付强
  • 英文作者:Li Shutao;Wei Na;Li Haitao;Pang Weixin;Xi Yongzhao;Zhen Lijun;Fu Qiang;Southwest Petroleum University;CNOOC Research Institute Co., Ltd.;
  • 关键词:天然气水合物 ; 固态流化开采 ; 固相颗粒 ; 水平管段 ; 运移规律 ; 粒径 ; 管径 ; 丰度 ; 速度 ; 破碎效果
  • 英文关键词:Natural gas hydrate;;Exploitation by solid fluidization;;Solid particle;;Horizontal pipe section;;Migration law;;Particle size;;Pipe diameter;;Abundance;;Velocity;;Crushing efficiency
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:西南石油大学;中海油研究总院有限责任公司;
  • 出版日期:2018-10-26 13:09
  • 出版单位:天然气工业
  • 年:2018
  • 期:v.38;No.300
  • 基金:国家重点研发计划“海洋水合物固态流化测试新技术”(编号:2016YFC0304008);; 中国工程科技中长期发展战略研究领域战略研究项目“面向2035的深海天然气水合物开发战略研究”(编号:2017-ZCQ-5);; 国家自然科学基金重点项目“控压钻井测控理论及关键问题研究”(编号:51334003)
  • 语种:中文;
  • 页:TRQG201810017
  • 页数:7
  • CN:10
  • ISSN:51-1179/TE
  • 分类号:106-112
摘要
为了弄清在固态流化采掘条件下,海洋非成岩天然气水合物(以下简称水合物)藏固相颗粒在水平管段内的运移规律,基于液固两相流模型,采用Fluent软件耦合EDEM软件模拟了在水平管段不同液相速度、不同粒径、不同丰度下的水合物固相颗粒运移特征,并采用大型固态流化采掘物理实验模拟工具对数值模拟结果进行验证。研究结果表明:(1)单颗粒水合物在水平管段中的运移方式以跃移和蠕移为主,水合物颗粒群在水平管段中的运移方式受水合物丰度、液相速度、管径、水合物固相颗粒粒径影响较大;(2)当水合物丰度较低、颗粒粒径较大、液相流速较低时,固相颗粒运移方式主要以跃移、蠕移为主;(3)当水合物丰度较高、颗粒粒径较小、液相流速较大时,固相颗粒运移方式主要以悬移为主;(4)提高液相进口速度是提高水平管内净化效果的有效手段。结论认为:(1)选取破碎效果较好的二级破碎工具可以提高水平管段固相颗粒群的净化效果;(2)水合物固态流化开采水平管段内压力降主要受液相流速影响较大,在满足举升泵设备负荷前提下,应调整注入排量来达到合适的液相流速。
        This paper aims to find out the migration law of solid phase particles in horizontal pipe sections in the exploitation of natural gas hydrate resources through solid fluidization. First, based on the liquid–solid two-phase flow model, the Fluent software was applied to couple with the EDEM software to simulate the migration of solid hydrate particles transported through horizontal pipe segments with different liquid phase velocities, various particle sizes and hydrate abundances. Then a large physical experimental simulator for solid fluidization exploitation was adopted to validate the results of numerical simulation. The following findings were obtained.(1) The main migration modes of single-particle hydrate in horizontal section are saltation and creep. And the migration pattern of hydrate particle clusters in horizontal pipe section was greatly affected by hydrate abundance, liquid phase velocity, pipe diameter and solid particle size;(2) When the hydrate abundance and the liquid phase velocity are higher and the pipe diameter is small, the migration modes of solid particles are dominated by saltation and creep movement; conversely, the migration mode is mainly suspension movement.(3) To increase the inlet liquid velocity is an efficient means to improve the purification effect in horizontal tube sections. It is concluded that choosing the secondary crushing device with better crushing effect can improve the purification effect of solid particle clusters in horizontal pipe section. Besides, the pressure drop in the horizontal pipe section is mainly affected by the liquid velocity. In the prerequisite of meeting the lifting pump equipment load, the liquid velocity should be adjusted to achieve the appropriate liquid phase flow rate.
引文
[1]Wei Na,Sun Wantong,Meng Yingfeng,Zhou Shouwei,Li Gao,Guo Ping,et al.Sensitivity analysis of multiphase flow in annulus during drilling of marine natural gas hydrate reservoirs[J].Journal of Natural Gas Science and Engineering,2016,36(A):692-707.
    [2]Wei Na,Meng Yingfeng,Li Gao,Guo Ping,Liu Anqi,Xu Tian,et al.Foam drilling in natural gas hydrate[J].Thermal Science,2015,19(4):1403-1405.
    [3]魏纳,孙万通,孟英峰,周守为,付强,郭平,等.海洋天然气水合物藏钻探环空相态特性[J].石油学报,2017,38(6):710-720.Wei Na,Sun Wantong,Meng Yingfeng,Zhou Shouwei,Fu Qiang,Guo Ping,et al.Annular phase behavior analysis during marine natural gas hydrate reservoir drilling[J].Acta Petrolei Sinica,2017,38(6):710-720.
    [4]周守为,赵金洲,李清平,陈伟,周建良,魏纳,等.全球首次海洋天然气水合物固态流化试采工程参数优化设计[J].天然气工业,2017,37(9):1-14.Zhou Shouwei,Zhao Jinzhou,Li Qingping,Chen Wei,Zhou Jianliang,Wei Na,et al.Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization[J].Natural Gas Industry,2017,37(9):1-14.
    [5]赵金洲,周守为,张烈辉,伍开松,郭平,李清平,等.世界首个海洋天然气水合物固态流化开采大型物理模拟实验系统[J].天然气工业,2017,37(9):15-22.Zhao Jinzhou,Zhou Shouwei,Zhang Liehui,Wu Kaisong,Guo Ping,Li Qingping,et al.The first global physical simulation experimental systems for the exploitation of marine natural gas hydrates through solid fluidization[J].Natural Gas Industry,2017,37(9):15-22.
    [6]宋巍.水平井岩屑运移规律研究[D].成都:西南石油大学,2013.Song Wei.The research on cuttings transport regularity of horizontal well[D].Chengdu:Southwest Petroleum University,2013.
    [7]李皋,肖贵林,李小林,李诚.气体钻水平井岩屑运移数值模拟研究[J].石油钻探技术,2015,43(4):66-72.Li Gao,Xiao Guilin,Li Xiaolin&Li Cheng.Numerical simulation for cutting migration during gas drilling of horizontal wells[J].Petroleum Drilling Techniques,2015,43(4):66-72.
    [8]魏纳,徐汉明,孙万通,赵金洲,张烈辉,付强,等.水平井段内不同丰度天然气水合物固相颗粒的运移规律[J].天然气工业,2017,37(12):75-80.Wei Na,Xu Hanming,Sun Wantong,Zhao Jinzhou,Zhang Liehui,Fu Qiang,et al.Migration laws of natural gas hydrate solid particles with different abundance in horizontal wells[J].Natural Gas Industry,2017,37(12):75-80.
    [9]岳湘安.液-固两相流基础[M].北京:石油工业出版社,1996:64-96.Yue Xiang'an.Liquid-solid two-phase flow basis[M].Beijing:Petroleum Industry Press,1996:64-96.
    [10]宋洵成,管志川,陈绍维.斜井岩屑运移临界环空流速力学模型[J].中国石油大学学报(自然科学版),2009,33(10):108-110.Song Xuncheng,Guan Zhichuan&Chen Shaowei.Mechanics model of critical annular velocity for cuttings transportation in deviated well[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(10):108-110.
    [11]赵庆国,张明贤.水力旋流器分离技术[M].北京:化学工业出版社,2003:9-11.Zhao Qingguo&Zhang Mingxian,The hydrocyclone separation technology[M].Beijing:Chemical Industry Press,2003:9-11.
    [12]龙芝辉,汪志明,郭晓乐.斜直井段和水平井段中环空岩屑运移机理的研究[J].石油大学学报(自然科学版),2005,29(5):42-45.Long Zhihui,Wang Zhiming&Guo Xiaole.Transport mechanism of cuttings in annulus during deviated and horizontal drilling[J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(5):42-45.
    [13]郭晓乐,汪志明.大位移钻井全井段岩屑动态运移规律[J].中国石油大学学报(自然科学版),2011,35(9):123-132.Guo Xiaole&Wang Zhiming.Transient cuttings transport laws through all sections of extended reach well[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(9):123-132.
    [14]Zachary MA,Erika PB,Sloan ED,Amadeu KS&Carolyn AK.Interfacial mechanisms governing cyclopentaneclathrate hydrate adhesion/cohesion[J].Physical Chemistry Chemical Physics,2011,13(44):19796-19806.
    [15]Wei Na,Meng Yingfeng,Li Gao,Li Yongjie,Liu Anqi,Long Junxi,et al.Cuttings-carried theories and erosion rule in gas drilling horizontal well[J].Thermal Science,2014,18(5):1695-1698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700