用户名: 密码: 验证码:
壳聚糖-富里酸协同调控Ca_xCd_(1-x)CO_3固溶体结晶
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Synergistic Regulation of Ca_xCd_(1-x)CO_3 by Chitosan-Fulvic Acid
  • 作者:杨田丽 ; 聂桂花 ; 贺任 ; 王文磊 ; 张宁
  • 英文作者:YANG Tianli;NIE Guihua;HE Ren;WANG Wenlei;ZHANG Ning;College of Science, Central South University of Forestry and Technology;College of Materials Science and Engineering, Central South University of Forestry and Technology;
  • 关键词:固溶体 ; 壳聚糖 ; 富里酸 ; Ca_xCd_(1-x)CO_3
  • 英文关键词:solid solution;;chitosan;;fulvic acid;;Ca_xCd_(1-x)CO_3
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:中南林业科技大学理学院;中南林业科技大学材料科学与工程学院;
  • 出版日期:2019-04-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金青年基金项目(21607176);; 湖南省自然科学基金项目(2017JJ3516);; 湖南省教育厅优秀青年基金项目(16B274);; 中南林业科技大学林学重点学科开放基金项目(2016ZD11)
  • 语种:中文;
  • 页:FJKS201904019
  • 页数:6
  • CN:04
  • ISSN:42-1245/X
  • 分类号:136-141
摘要
以壳聚糖和富里酸混合溶液为介质,利用碳酸铵气相扩散法合成Ca_xCd_(1-x)CO_3固溶体,文章研究了Ca_xCd_(1-x)CO_3固溶体成核结晶行为,探究这2种介质对于Ca_xCd_(1-x)CO_3固溶体固化Cd能力及稳定性的影响。通过结晶固相成分分析,结果表明液相中各组分浓度能够影响固相中Cd的含量。液相Cd~(2+)浓度增加,Cd在固溶体中的含量也增加。随着富里酸浓度增加,固溶体中Cd含量降低,意味着在富里酸存在下固溶体固化Cd能力降低。红外光谱和XRD结果证明了壳聚糖和富里酸不影响固溶体晶体的结构。扫描电镜和透射电镜分析进一步表明,壳聚糖和富里酸在不同程度上都影响了固溶体的晶体形貌及固相组成。在壳聚糖存在下晶体表面形成薄膜将晶体包覆,随着壳聚糖浓度增加,固溶体中Cd含量增加到39.90%,且晶体形貌逐渐转向球体。该研究结果表明Cd~(2+)进入碳酸钙晶格中能有效降低溶液中的Cd~(2+)达到净化水体的效果,壳聚糖和富里酸的协同作用实现了水体中重金属Cd~(2+)的转化和钝化。
        Ca_xCd_(1-x)CO_3 solid solution was synthesized in the mixed media of chitosan and fulvic acid by the ammonium carbonate gaseous diffusion method. Further, effects of two media for some aspects of Ca_xCd_(1-x)CO_3 solid solution including its nucleation behavior, solidifying Cd ability and stability were investigated. The results of composition analysis in solid phase show that Cd contents in solid phase can be relative with the composition in aqueous phase. The higher the Cd concentration is in aqueous phase, the higher the Cd content is in solid phase. However, with the increasing concentration of fulvic acid,Cd content in solid phase is decreasing, indicating that the solidifying Cd ability of solid solution becomes weak in acidic conditions. The results of FTIR and XRD confirm that the structure of Ca_xCd_(1-x)CO_3 solid solution is not affected by chitosan and fulvic acid. However, its morphology and composition have a large relationship with these two media. These are confirmed by analysis of SEM and TEM. The chitosan can form thin film to clad crystal. With the increasing concentration of chitosan,Cd content in Ca_xCd_(1-x)CO_3 solid solution adds up to 39.90% and the morphology of solid solution gradually changes into sphere. The studied results display that Ca~(2+)in the calcium carbonate crystal can be replaced by Cd~(2+) so that decreasing the Cd~(2+) content could realize the aim of purifying water body. The synergistic effect of chitosan and fulvic acid achieve the conversion and passivation of heavy metal Cd~(2+) in water body, which is significant for the environmental governance of cadmium.
引文
[1]Yuan Q,Li N,Chi Y,et al.Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions[J].Journal of Hazardous Materials,2013(254):157-165.
    [2]戴世明,吕锡武.镉污染的水处理技术研究进展[J].安全与环境工程,2006,13(3):63-65,71.Dai Shiming,Lyu Xiwu.Advances on water treatment technology of cadmium pollution[J].Safety and Environmental Engineering,2006,13(3):63-65,71.
    [3]Lasko C,Hurst M P.An investigation into the use of chitosan for the removal of soluble silver from industrial wastewater[J].Environmental Science and Technology,1999,33(20):3622-3626.
    [4]朱余银,戴塔根,吴堑虹.湘江长株潭段底泥重金属污染现状评价[J].中南大学学报:自然科学版,2012,43(9):3710-3717.Zhu Yuyin,Dai Tagen,Wu Qianhong.Assessment on heavy metals contamination in sediments of Changsha-ZhuzhouXiangtan section of Xiangjiang River[J].Journal of Central South University:Natural Science Edition,2012,43(9):3710-3717.
    [5]刘俊,李静,赵运林,等.湘江大源渡枢纽底泥中镉、铅的污染特征及其潜在生态风险评价[J].中国环境监测,2011,27(6):9-13.Liu Jun,Li Jing,Zhao Yunlin,et al.Pollution characteristics and potential ecological risk assessment of Cd,Pb in the sediments of Dayuandu Hydropower Station of Xiangjiang River[J].Environmental Monitoring in China,2011,27(6):9-13.
    [6]丁园,张宝林,吴余金.麦饭石对复合污染土壤Cu、Cd的固持阻控[J].环境科学与技术,2018,41(1):52-56.Ding Yuan,Zhang Baolin,Wu Yujin.Immobilization of Cu and Cd in contaminated soil by use of maifanite[J].Environmental Science&Technology,2018,41(1):52-56.
    [7]Pérez Garrido C,Fernández Díaz L,Pina C M,et al.In situ AFM observations of the interaction between calcite(10ī4)surfaces and Cd-bearing aqueous solutions[J].Surface Science,2007,601(23):5499-5509.
    [8]Godelitsas A,Astilleros J M,Hallam K,et al.Interaction of calcium carbonates with lead in aqueous solutions[J].Environmental Science and Technology,2003,37(15):3351-3360.
    [9]Thakur S K,Tomar N K,Pandeya S B.Influence of phosphate on cadmium sorption by calcium carbonate[J].Geoderma,2006,130(3):240-249.
    [10]周小娟,杨柱,程慧琳,等.大理石去除水溶液中Cd2+的性能实验研究[J].工业安全与环保,2007,23(6):21-23.Zhou Xiaojuan,Yang Zhu,Cheng Huilin,et al.Study on the removal ability of Cd2+in aqueous solution by marble[J].Industrial Safety and Environmental Protection,2007,23(6):21-23.
    [11]Nguyen K L,Lewis D M,Jolly M,et al.Determination of soluble aluminum concentration in alkaline humic water using atomic absorption spectrophotometry[J].Water Research,2004,38(19):4039-4044.
    [12]徐尚平,陶澍.腐殖酸络合态铜对鱼的生物有效性[J].环境化学,1999,18(6):547-551.Xu Shangping,Tao Shu.Fish uptake of fulvic acid complexed copper[J].Environmental Chemistry,1999,18(6):547-551.
    [13]翟莹雪,魏世强.土壤富里酸对铅的吸附作用与影响因素的研究[J].农业环境科学学报,2010,29(S1):127-131.Zhai Yingxue,Wei Shiqiang.Influencing factors and lead adsorption by soil fulvic acid[J].Journal of Agro-environment Science,2010,29(S1):127-131.
    [14]郝全龙,谯华,周从直,等.富里酸对TNT的吸附-解吸行为[J].环境工程学报,2016,10(5):2687-2692.Hao Quanlong,Qiao Hua,Zhou Congzhi,et al.Adsorption and desorption behaviors of TNT on fulvic acid[J].Chinese Journal of Environmental Engineering,2016,10(5):2687-2692.
    [15]张延坤,刘国忠.甲壳素与壳聚糖及其衍生物的制备和在日化工业中的应用[J].日用化学工业,1998,28(4):36-40.
    [16]李沁华,刘宇涛,邹翰,等.以聚乙二醇为致孔剂的甲壳糖吸附、缓释葡萄糖的研究[J].暨南大学学报:自然科学与医学版,1995,60(3):81-84.Li Qinhua,Liu Yutao,Zou Han,et al.Chitosan-polyethylene glycol for adsorption and sustained delivery of glucose[J].Journal of Jinan University:Natural Science and Medicine Edition,1995,60(3):81-84.
    [17]胡家震,陈东辉.壳聚糖在水处理中的应用[J].福建环境,2002,19(3):26-28.Hu Jiazhen,Chen Donghui.Application of chitosan in the water treatment[J].Fujian Environment,2002,19(3):26-28.
    [18]黄青青,刘艺芸,徐应明,等.叶面硒肥与海泡石钝化对水稻镉硒累积的影响[J].环境科学与技术,2018,41(4):116-121,159.Huang Qingqing,Liu Yiyun,Xu Yingming,et al.Immobilization using foliar applications of Se and Se combined with sepiolite:effects on Cd and Se accumulation in rice[J].Environmental Science&Technology,2018,41(4):116-121,159.
    [19]孙新枝,苏中兴.改性壳聚糖的制备及其对金属离子的吸附性能[J].化学研究,2005(1):29-31.Sun Xinzhi,Su Zhongxing.Modification of chitosan and its adsorption for metal ions[J].Chemical Research,2005(1):29-31.
    [20]罗蓝,罗学刚,韩旭,等.酸模对水中U、Cd、As、Mn的富集特征与去除能力[J].环境科学与技术,2018,41(1):84-89.Luo Lan,Luo Xuegang,Han Xu,et al.Accumulation characteristics and removal ability of U,Cd,As and Mn by Rumex acetosa[J].Environmental Science&Technology,2018,41(1):84-89.
    [21]邱舒,曹媛媛,吴成龙.改性壳聚糖空心微球的制备及对重金属离子的吸附性能研究[J].生物化工,2017,3(6):13-17.Qiu Shu,Cao Yuanyuan,Wu Chenglong.The preparation of chitosan hollow microspheres and the adsorption properties for heavy metal ions[J].Biological Chemical Engineering,2017,3(6):13-17.
    [22]林霞,黄风华,陈娟,等.光谱法研究CdSe/CdS/ZnS量子点与壳聚糖的复合[J].化学研究,2010,21(3):85-87.Lin Xia,Huang Fenghua,Chen Juan,et al.Study on the complex of CdSe/CdS/ZnS quantum dots and chitosan by spectrometry[J].Chemical Research,2010,21(3):85-87.
    [23]唐海雄,郭亚平,周玉,等.以壳聚糖为添加剂制备单分散碳酸钙微粒[J].稀有金属材料与工程,2009,38(S2):838-841.Tang Haixiong,Guo Yaping,Zhou Yu,et al.Preparation of monodisperse calcium carbonate particles with chitosan as additive[J].Rare Metal Materials and Engineering,2009,38(S2):838-841.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700