用户名: 密码: 验证码:
纳米银杀虫剂的作用机理和安全性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research advance on potentially involved insecticidal mechanisms and safety evaluation of nano-silver insecticide
  • 作者:唐萌 ; 汪岩
  • 英文作者:TANG Meng;WANG Yan;Key Laboratory of Environmental Medicine Engineering of Ministry of Education,School of Public Health;Jiangsu Key Laboratory for Biomaterials and Devices,Southeast University;
  • 关键词:纳米颗粒 ; 纳米银 ; 杀虫剂 ; 作用机理 ; 安全性评价
  • 英文关键词:nanoparticle;;nanosilver;;insecticide;;function mechanism;;safety evaluation
  • 中文刊名:WSSC
  • 英文刊名:Chinese Journal of Hygienic Insecticides & Equipments
  • 机构:东南大学公共卫生学院环境医学工程教育部重点实验室;江苏省生物材料与器件重点实验室;
  • 出版日期:2019-02-20
  • 出版单位:中华卫生杀虫药械
  • 年:2019
  • 期:v.25;No.129
  • 基金:国家重大科学研究计划项目(编号:2011CB933404)
  • 语种:中文;
  • 页:WSSC201901001
  • 页数:6
  • CN:01
  • ISSN:32-1637/R
  • 分类号:6-11
摘要
纳米材料作为新世纪重要工具在不同领域发挥着重要作用。由于传统化学杀虫剂的高毒性,找寻新型替代物成了控制害虫的重要工作。目前,基于自然资源的新型杀虫剂已有广泛的研究报道,其中纳米材料杀虫剂最近引起了高度的关注。现有研究关注不同属性纳米材料对节肢动物和媒介生物的毒性效应,包括纳米二氧化硅、纳米氧化铝、纳米银和氧化石墨烯纳米粒子等等,以纳米银研究最为广泛。本文综述了现阶段纳米银作为潜在杀虫剂对昆虫的一般毒性和毒性机制。潜在毒性机制主要包括纳米银诱导的氧化应激,影响了氧化酶和解毒酶,导致细胞死亡和组织损伤;以及纳米银破坏蛋白质紊乱,降低了乙酰胆碱酯酶活性,减少蛋白质合成和促性腺激素释放,导致发育损害和生殖障碍等。并且分析了毒作用影响因素,强调了安全性评价的重要性。在探讨纳米杀虫剂潜在杀虫作用的同时,非靶标生物(益虫、鱼类、水生植物等等)的安全性评价不可忽视。基于现有研究,特殊纳米属性(大小、电荷、表面化学等)对杀虫效率的提升是否有影响还有待阐明,以及各种潜在的毒作用机制还不明确,未来仍需开展相关领域的研究。
        Nanomaterials as important tools are playing essential roles in diverse fields in this century. Due to the high toxicity of traditional chemical pesticides,finding new alternatives has become an important task in controlling pests. At present,new insecticides based on natural resources have been widely reported,and nano-insecticides have attracted a lot of attention recently. Some studies have focused on the toxic effects of different types of nanomaterials on arthropods and vector,including nano-silica,nano-alumina,nano-silver and graphene oxide nanoparticles,and so on.Among them,the most widely studied is nano-silver. This review aimed at summarizing the general toxicity of nanosilver as a potential insecticide at this stage. The toxicological mechanisms involved are mainly referred to oxidative stress,protein disequilibrium,and release of metal ion and DNA damage. Specifically,the imbalance between oxidase and detoxification enzyme leads to the decrease of acetylcholinesterase activity,protein synthesis and gonadotropin release,followed by developmental damage and reproductive disorders. Meanwhile,influence factors affecting the toxic effect were also analyzed. And at the same time the importance of safety evaluation was emphasized.While the potential insecticidal effects of nano-insecticides were discussed,the safety evaluation of non-target organisms( beneficial insects,fish,aquatic plants) can not be ignored. Based on existing research,whether the special nano-properties( size,charge,surface chemistry,and so on) have an impact on the improvement of insecticidal efficiency remains to be clarified,and the various potential mechanisms of toxic effects are still unclear. Hence,research in related fields still need to be discussed in the future.
引文
[1] Wang Y,Xiong L,Tang M. Toxicity of inhaled particulate matter on the central nervous system:neuroinflammation,neuropsychological effects and neurodegenerative disease[J]. J Applied Toxicol,2017,37(6):644-667.
    [2] Wang Y,Tang M. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure[J]. Internat J nanomedicine,2018,13:2729-2742.
    [3] Wang Y,Tang M. Review of in vitro toxicological research of quantum dot and potentially involved mechanisms[J]. Sci Total Environ,2018,625:940-962.
    [4] Afrasiabi Z,Popham HJ,Stanley D,et al. Dietary silver nanoparticles reduce fitness in a beneficial,but not pest,insect species[J]. Archives Insect Bioche Physiol,2016,93(4):190-201.
    [5] Bharani SA,Namasivayam SKR. Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura(Fab.)(Lepidoptera:Noctuidae)-An eco-friendly approach of insect pest control[J]. J Environ Chem Eng,2017,5(1):453-467.
    [6] Banu AN,Balasubramanian C. Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector,Aedes aegypti(Diptera:Culicidae)[J]. Parasitol Res,2014,113(8):2869-2877.
    [7] Kalimuthu K,Panneerselvam C,Chou C,et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus:Synergy with Hedychium coronariumsynthesized silver nanoparticles and related histological changes in targeted mosquitoes[J]. Process Safety Environ Protec,2017,109:82-96.
    [8] Ahamed M,Posgai R,Gorey TJ,et al. Silver nanoparticles induced heat shock protein 70,oxidative stress and apoptosis in Drosophila melanogaster[J]. Toxicol Applied Pharmacol,2010,242(3):263-269.
    [9] Nair PM,Park SY,Choi J. Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius[J]. Chemosphere,2013,92(5):592-599.
    [10] Nair PM,Choi J. Identification,characterization and expression profiles of Chironomus riparius glutathione S-transferase(GST)genes in response to cadmium and silver nanoparticles exposure[J]. Aquatic Toxicol(Amsterdam,Netherlands),2011,101(3-4):550-560.
    [11] Posgai R,Cipolla-Mc Culloch CB,Murphy KR,et al. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development,reproductive effort,and viability:size,coatings and antioxidants matter[J]. Chemosphere,2011,85(1):34-42.
    [12] Yasur J,Rani PU. Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth,development and physiology[J]. Chemosphere,2015,124:92-102.
    [13] Mao BH,Chen ZY,Wang YJ,et al. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses[J]. Scientific Rep,2018,8(1):2445.
    [14] Chandramohan B,Murugan K,Panneerselvam C,et al. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles:genotoxicity and impact on predation efficiency of mosquito natural enemies[J]. Parasitol Res,2016,115(3):1015-1025.
    [15] Murugan K,Nataraj D,Madhiyazhagan P,et al. Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus:genotoxicity and impact on behavioral traits of nontarget aquatic organisms[J]. Parasitol Res,2016,115(3):1071-1083.
    [16] Nair PM,Park SY,Lee SW,et al. Differential expression of ribosomal protein gene,gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius[J]. Aquatic Toxicol(Amsterdam,Netherlands),2011,101(1):31-37.
    [17] Demir E,Vales G,Kaya B,et al. Genotoxic analysis of silver nanoparticles in Drosophila[J]. Nanotoxicology,2011,5(3):417-424.
    [18] Fouad H,Hongjie L,Hosni D,et al. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action[J].Artifi Cells Nanomed Biotechnol,2018,46(3):558-567.
    [19] Ga'al H,Fouad H,Mao G,et al. Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis[J]. Artif Cells Nanomed Biotechnol,2018,46(6):1171-1179.
    [20] Chifiriuc MC,Ratiu AC,Popa M,et al. Drosophotoxicology:An Emerging Research Area for Assessing Nanoparticles Interaction with Living Organisms[J]. Internat J Molecular Sci,2016,17(2):1-14.
    [21] Posgai R,Ahamed M,Hussain SM,et al. Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing[J]. Sci Total Environ,2009,408(2):439-443.
    [22] Armstrong N,Ramamoorthy M,Lyon D,et al. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis[J]. Plo S One,2013,8(1):e53186.
    [23] Raj A,Shah P,Agrawal N. Dose-dependent effect of silver nanoparticles(Ag NPs)on fertility and survival of Drosophila:An in-vivo study[J]. Plo S One,2017,12(5):e0178051.
    [24] Nair PM,Choi J. Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge,Chironomus riparius upon exposure to nonylphenol and silver nanoparticles[J]. Environ Toxicol Pharmacol,2012,33(1):98-106.
    [25] Foldbjerg R,Jiang XM,Miclaus T,et al. Silver nanoparticles-wolves in sheep's clothing?[J]. Toxicol Res,2015,4(3):563-575.
    [26] Avalos A,Haza AI,Drosopoulou E,et al. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test(SMART)on Drosophila[J].Food Chem Toxicol,2015,85:114-119.
    [27] Ong C,Lee QY,Cai Y,et al. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis[J]. Sci Rep,2016,6:20632.
    [28] Murugan K,Aruna P,Panneerselvam C,et al. Fighting arboviral diseases:low toxicity on mammalian cells,dengue growth inhibition(in vitro),and mosquitocidal activity of Centroceras clavulatumsynthesized silver nanoparticles[J]. Parasitol Res,2016,115(2):651-662.
    [29] Meng X,Abdlli N,Wang N,et al. Effects of Ag Nanoparticles on growth and fat body proteins in silkworms(Bombyx mori)[J].Biol Trace Element Re,2017,180(2):327-337.
    [30] Gorth DJ,Rand DM,Webster TJ. Silver nanoparticle toxicity in Drosophila:size does matter[J]. Internat J Nanomed,2011,6:343-350.
    [31] Phatak KA,Khanna PK,Nath BB. Particle size-independent induction of leucism in Drosophila melanogaster by silver:nano vs micro[J]. Metallomics,2016,8(12):1243-1254.
    [32] Panacek A,Prucek R,Safarova D,et al. Acute and chronic toxicity effects of silver nanoparticles(NPs)on Drosophila melanogaster[J]. Environ Sci Tech,2011,45(11):4974-4979.
    [33] Kumar PM,Murugan K,Madhiyazhagan P,et al. Biosynthesis,characterization,and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito,Aedes albopictus,and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides[J]. Parasitol Res,2016,115(2):751-759.
    [34] Narkhede CP,Suryawanshi RK,Patil CD,et al. Use of protease inhibitory gold nanoparticles as a compatibility enhancer for Bt and deltamethrin:A novel approach for pest control[J]. Biocatalysis Agricul Biotechnol,2016,8:8-12.
    [35] Govindarajan M,Benelli G. Facile biosynthesis of silver nanoparticles using Barleria cristata:mosquitocidal potential and biotoxicity on three non-target aquatic organisms[J]. Parasitol Res,2016,115(3):925-935.
    [36] Murugan K,Anitha J,Dinesh D,et al. Fabrication of nanomosquitocides using chitosan from crab shells:Impact on non-target organisms in the aquatic environment[J]. Ecotoxicol Environ Safety,2016; 132:318-328.
    [37] Govindarajan M,Khater HF,Panneerselvam C,et al. One-pot fabrication of silver nanocrystals using Nicandra physalodes:A novel route for mosquito vector control with moderate toxicity on non-target water bugs[J]. Res Vet Sci,2016,107:95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700