用户名: 密码: 验证码:
煤粉燃烧过程中H_2S生成机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in mechanism of H_2S formation during pulverized coal combustion
  • 作者:马红和 ; 周璐 ; 马素霞 ; 白玉
  • 英文作者:MA Honghe;ZHOU Lu;MA Suxia;BAI Yu;College of Electrical and power engineering, Taiyuan University of Technology;Xi'an Changqing Technology & Engineering Co., Ltd.;
  • 关键词:煤粉燃烧 ; H2S生成 ; 总包反应机理 ; 详细反应机理 ; 多孔壁风 ; 空气分级 ; 低NOx排放 ; 高效燃烧
  • 英文关键词:pulverized coal combustion;;H2S formation;;global reaction mechanism;;detailed reaction mechanism;;multi-hole wall air;;air staging;;low NOx emission;;high efficient combustion
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:太原理工大学电气与动力工程学院;西安长庆科技工程有限责任公司;
  • 出版日期:2019-01-03 10:33
  • 出版单位:热力发电
  • 年:2019
  • 期:v.48;No.386
  • 基金:国家自然科学基金项目(51706151);; 山西省基础研究项目(2015021109);; 山西省煤基重点科技攻关项目(MD2014-07)~~
  • 语种:中文;
  • 页:RLFD201901001
  • 页数:5
  • CN:01
  • ISSN:61-1111/TM
  • 分类号:5-9
摘要
本文综述了H_2S生成的总包反应机理和详细反应机理,分析了相关研究中还需进一步解决的问题。在此基础上,提出了多孔壁风耦合空气燃烧技术,以抑制煤粉燃烧过程中H_2S的生成。初步的实验结果表明,该技术可望在实现低NO_x排放和高效燃烧的同时,有效抑制水冷壁面附近H_2S的生成。今后的研究应集中在完善H_2S生成的总包反应机理、修正其详细反应机理及构建简化机理,并论证多孔壁风耦合空气分级燃烧技术优势。
        The globe and detailed mechanism of H_2S formation during pulverized coal combustion is reviewed in detail, and the problems of the current studies are pointed out and analyzed. Moreover, the multi-hole wall air coupling with air staged(MH&AS) combustion technology is proposed to restrain the H_2S formation. The primary experimental results show that, the MH&AS technology not only can realize low NO_x emission and high efficient combustion, but also inhibit the formation of H_2S on the water cooled wall surface. Furthermore, it suggests that the future research should focus on improving the globe reaction mechanism for H_2S formation,modifying the detailed reaction mechanism, constructing the simplified mechanism, and demonstrating the advantages of the air-staged combustion technology with air-coupled porous wall.
引文
[1]WANG J,FAN W,LI Y,et al.The effect of air staged combustion on NOxemissions in dried lignite combustion[J].Energy,2012,37(1):725-736.
    [2]SUNG Y,LEE S,KIM C,et al.Synergistic effect of co-firing woody biomass with coal on NOxreduction and burnout during air-staged combustion[J].Experimental Thermal and Fluid Science,2016,71:114-125.
    [3]ZHANG D,YANI S.Sulphur transformation during pyrolysis of an Austrilian lignite[J].Proceedings of the Combustion Institute,2011,33:1747-1753.
    [4]FAN W,LIN Z,LI Y,et al.Experimental flow field characteristics of OFA for large-angle counter flow of fuel-rich jet combustion technology[J].Applied Energy,2010,87(8):2737-2745.
    [5]KUNG C.Further understanding of furnace wall corrosion in coal-fired boilers[J].Corrosion,2014,70(7):749-763.
    [6]KUNG C.High-temperature corrosion mechanisms for selected iron and nickel-based alloys exposed to sulfur and chlorine-containing environments[J].Corrosion,2015,71(4):483-501.
    [7]SHIRAI H,IKEDA M,ARAMAKI H.Characteristics of hydrogen sulfide formation in pulverized coal combustion[J].Fuel,2013,114(6):114-119.
    [8]TSUJI H,TANNO K,NAKAJIMA A,et al.Hydrogen sulfide characteristics of pulverized coal combustionevaluation of blended combustion of two bituminous coals[J].Fuel,2015,158:523-529.
    [9]ZHANG Z,LI Z,CAI N.Formation of reductive and corrosive gases during air-staged combustion of blends of anthracite/sub-bituminous coals[J].Energy&Fuels,2016,30(5):4353-4362.
    [10]ZHANG B,REN Z,SHI S,et al.Numerical analysis of gasification and emission characteristics of a two-stage entrained flow gasifier[J].Chemical Engineering Science,2016,152:227-238.
    [11]FRIGGE L J,ELSERAFI G,STR?HLE J,et al.Sulfur and chlorine gas species formation during coal pyrolysis in nitrogen and carbon dioxide atmosphere[J].Energy&Fuels,2016,30(9):7713-7720.
    [12]ABIáN M,CEBRIáN M,áNGELA M,et al.CS2 and COS conversion under different combustion conditions[J].Combustion&Flame,2015,162(5):2119-2127.
    [13]ZHANG Z,CHEN D,LI Z,et al.Development of sulfur release and reaction model for computational fluid dynamic modeling in sub-bituminous coal combustion[J].Energy&Fuels,2017,31:1383-1398.
    [14]MA H,ZHOU L,MA S,et al.Reaction mechanism for sulfur species during pulverized coal combustion[J].Energy&Fuels,2018,32(3):3958-3966.
    [15]STR?HLE J,CHEN X,ZORBACH I,et al.Validation of a detailed reaction mechanism for sulfur species in coal combustion[J].Combustion Science&Technology,2014,186(4/5):540-551.
    [16]魏小林,韩小海,Uwe Schnell,等.煤粉燃烧中NOx和SOx生成的详细反应机理模拟[J].力学学报,2008,40(6):760-768.WEI Xiaolin,HAN Xiaohai,SCHNELL U,et al.Modelling of the NOxand SOxformation in pulverized coal combustion with detailed reaction mechanism[J].Chinese Journal of Theoretical and Applied Mechanics,2008,40(6):760-768.
    [17]郭啸峰,魏小林,李森.C/H/O/N/S/Cl/K/Na元素的详细反应机理的简化与验证[J].燃烧科学与技术,2013,19(1):21-30.GUO Xiaofeng,WEI Xiaolin,LI Sen.Reduction and verification of detailed reaction mechanism containing C/H/O/N/S/Cl/K/Na elements[J].Journal of Combustion Science and Technology,2013,19(1):21-30.
    [18]GIMéNEZ-LóPEZ J,MARTíNEZ M,MILLERA A,et al.SO2 effects on CO oxidation in a CO2 atmosphere,characteristic of oxy-fuel conditions[J].Combustion and Flame,2011,158:48-56.
    [19]SELIM H,IBRAHIM S,SHOAIBI A,et al.Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames[J].Applied Energy,2014,113:1134-1140.
    [20]RASMUSSEN C L,GLARBORG P,MARSHALL P.Mechanisms of radical removal by SO2[J].Proceedings of the Combustion Institute,2007,31:339-347.
    [21]BOHNSTEIN M,LANGEN J,FRIGGE L,et al.Comparison of CFD simulation with measurement of gaseous sulfur species concentrations in a pulverized coal fired1 MWth furnace[J].Energy&Fuels,2016,30:9836-9849.
    [22]IBRAHIM S,SHOAIBI A A,GUPTA A K.Role of toluene in hydrogen sulfide combustion under Claus condition[J].Applied Energy,2013,112(112):60-66.
    [23]ABIáN M,MILLERAá,BILBAO R,et al.Impact of SO2 on the formation of soot from ethylene pyrolysis[J].Fuel,2015,159:550-558.
    [24]周璐,马红和,马素霞,等.多孔壁风耦合空气分级的煤粉燃烧炉:201510685579.4[P].2017-07-25.ZHOU Lu,MA Honghe,MA Suxia,et al.A kind of porous wall air coupling with air staging combustion furnace for pulverized coal:201510685579.4[P].2017-07-25.
    [25]马红和,周璐,范江,等.多孔壁风耦合空气分级的煤粉燃烧系统:201510685385.4[P].2017-07-18.MA Honghe,ZHOU Lu,FAN Jiang,et al.A kind of porous wall air coupling with air staging combustion system for pulverized coal:201510685385.4[P].2017-07-18.
    [26]马红和,周璐,马素霞,等.防结焦防高温腐蚀的锅炉水冷壁保护装置:201410148685.4[P].2016-04-27.MA Honghe,ZHOU Lu,MA Suxia,et al.A kind of protection device for boiler water wall by preventing high-temperature corrosion and coking:201410148685.4[P].2016-04-27.
    [27]马红和,周璐,马素霞,等.多孔壁风耦合空气分级的燃烧技术[J].现代化工,2015,35(2):143-145.MA Honghe,ZHOU Lu,MA Suxia,et al.Progress in porous wall-air coupling with air-staged combustion technology[J].Modern Chemical Industry,2015,35(2):143-145.
    [28]MA H,ZHOU L,MA S,et al.Design of porous wall air coupling with air staged furnace for preventing high temperature corrosion and reducing NOxemissions[J].Applied Thermal Engineering,2017,124:865-870.
    [29]MA H,ZHOU L,MA S,et al.Impact of the multi-hole wall air coupling with air staged on NOxemission during pulverized coal combustion[J].Energy&Fuels,2018,32(2):1464-1473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700