用户名: 密码: 验证码:
顺层岩体隧道地震行波效应的不对称性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Asymmetry of Traveling Wave Effect of Seismic on Tunnel in Bedding Rock Mass
  • 作者:胡鸿运 ; 周晓军 ; 陈韬
  • 英文作者:HU Hong-yun;ZHOU Xiao-jun;CHEN Tao;School of Civil Engineering,Southwest Jiaotong University;Sichuan College of Architectural Technology;School of Transportation and Logistics, Southwest Jiaotong University;
  • 关键词:隧道工程 ; 行波效应 ; 数值分析 ; 顺层岩体隧道 ; 不对称性 ; 地震响应
  • 英文关键词:tunnel engineering;;traveling wave effect;;numerical analysis;;tunnel in bedding rock mass;;asymmetry;;seismic response
  • 中文刊名:GLJK
  • 英文刊名:Journal of Highway and Transportation Research and Development
  • 机构:西南交通大学土木工程学院;四川建筑职业技术学院;西南交通大学交通运输与物流学院;
  • 出版日期:2019-04-15
  • 出版单位:公路交通科技
  • 年:2019
  • 期:v.36;No.292
  • 基金:国家自然科学基金项目(51378436,61703351);; 中央高校基本科研业务费专项资金项目(2682017CX022)
  • 语种:中文;
  • 页:GLJK201904015
  • 页数:6
  • CN:04
  • ISSN:11-2279/U
  • 分类号:106-111
摘要
因地震波斜入射而产生的行波效应会显著增加隧道结构的内力和位移响应,从而对隧道抗震产生不利影响。为研究顺层岩体隧道地震行波效应的特征,对qP波斜入射方向与隧道纵断面相平行的工况,考虑顺层岩体的横观各向同性本构关系,应用波动分析方法并采用ANSYS进行地震响应数值分析。以某顺层岩体中高铁深埋隧道为工程背景,研究岩层倾角和岩层各向异性对隧道洞身段地震响应行波效应的影响。结果表明:当岩层水平或竖直时(即岩层倾角为0°或90°),隧道横断面左右对称位置上位移分量中隧道轴线方向的相对位移分量相同,这意味着顺层岩体隧道的地震行波效应左右严格对称,即横断面仍为平面;而岩层倾斜时(即岩层倾角不为0°或90°),隧道横断面左右对称位置上位移分量中隧道轴线方向的相对位移分量却不等,这意味着隧道横断面扭成不规则且不对称的曲面;随着岩层倾角的增大,曲面不对称性先增强后减弱(约倾角为45°时最强),呈非线性关系。此外,又进一步研究了岩层各向异性强度对行波效应的影响,结果发现:当岩层倾斜时,行波效应的不对称性随顺层岩体各向异性的增强而线性增强,这意味着顺层岩体各向异性越强,隧道横断面在地震波作用下所形成不规则曲面的不对称幅度也越大。
        The traveling wave effect caused by oblique incidence of seismic wave will significantly increase the internal force and displacement response of tunnel structure, which will adversely affect the anti-seismic performance of tunnel. In order to study the characteristics of the seismic traveling wave effect of tunnel in bedding rock mass, in view of the seismic qP wave oblique incident in parallel with the longitudinal section of the tunnel, considering the transversely isotropic constitutive relation of bedding rock mass, the wave numerical analysis on the seismic response is carried out by using ANSYS software and wave analysis method. On the background of a high-speed railway deep buried tunnel in a bedding rock mass, the influence of bedding rock dip angle and anisotropy on the seismic traveling wave effect of the tunnel is studied. The result shows that(1) when the rock layer is horizontal or vertical(the rock dip is equal to 0° or 90°), in the symmetrical positions of the tunnel cross section, the relative displacement components of the tunnel axis are same, showing the strictly symmetric traveling wave effect of tunnel in bedding rock mass(the cross section is still plane);(2)while the rock layer is inclined(the rock dip is not equal to 0° or 90°), in the symmetrical positions of the tunnel cross section, the relative displacement components of the tunnel axis are not same, which shows that the tunnel cross section is twisted into an irregular and asymmetric curved surface;(3) as the dip angle of rock layer increases, the asymmetry of the curved surface increases first and then decreases(the asymmetry is the strongest when the dip angle is about 45°). In addition, the influence of rock anisotropy strength on traveling wave effect is further studied. The result shows that when the rock layer is inclined, the asymmetry of seismic traveling wave effect increases linearly with the enhancement of rock anisotropy. This means that the stronger the bedding rock anisotropy is, the greater the asymmetry of the irregular curved surface formed by cross-section of tunnel under the action of wave will be.
引文
[1] JOHN ST C M,ZAHRAH T F. Aseismic Design of Underground Structures[J]. Tunnelling and Underground Space Technology, 1987, 2(2): 165-197.
    [2] HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic Design and Analysis of Underground Structures[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2001, 16(4):247-293.
    [3] 梁庆国,边磊,张钦鹏,等.大断面黄土隧道洞口段地震动力特性研究[J].公路交通科技,2018,35(7):65-76.LIANG Qing-guo, BIAN Lei, ZHANG Qin-peng, et al. Study on Seismic Dynamic Characteristics of Large Section Loess Tunnel Portal[J]. Journal of Highway and Transportation Research and Development, 2018, 35(7): 65-76.
    [4] 张晋东, 梁庆国, 蒲建军,等. 不同进洞高程黄土隧道洞口段振动台模型试验研究[J]. 公路交通科技, 2018, 35(7): 77-85.ZHANG Jin-dong, LIANG Qing-guo, PU Jian-jun, et al. Experimental Study on Shaking Table Model of Portal Section of Loess Tunnel with Different Tunneling Elevations[J]. Journal of Highway and Transportation Research and Development, 2018, 35(7): 77-85.
    [5] YU H T, YAN X, BOBET A, et al. Multi-point Shaking Table Test of a Long Tunnel Subjected to Non-Uniform Seismic Loadings[J]. Bulletin of Earthquake Engineering, 2017(9):1-19.
    [6] 晏启祥,刘记,何川.公路盾构隧道地震响应的反应位移法分析[J].公路交通科技,2011,28(4):96-99. YAN Qi-xiang, LIU Ji, HE Chuan. Analysis on Seismic Response of Highway Shield Tunnel Using Response Displacement Method[J]. Journal of Highway and Transportation Research and Development, 2011, 28(4):96-99.
    [7] 袁勇, 禹海涛, 燕晓,等. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报,2016,29(12):157-165.YUAN Yong, YU Hai-tao, YAN Xiao, et al. Multi-point Shaking Table Test Simulation and Analysis of a Super-long Immersed Tunnel[J]. China Journal of Highway and Transport, 2016, 29(12):157-165.
    [8] OKAMOTO S. Introduction to Earthquake Engineering [M]. 2nd ed. Tokyo: University of Tokyo Press,1984.
    [9] SHARMA S,JUDD W R. Underground Opening Damage From Earthquakes [J]. Engineering Geology,1991,30(3/4):263-276.
    [10] 吉随旺,唐永建,胡德贵,等.四川省汶川地震灾区干线公路典型震害特征分析[J].岩石力学与工程学报.2009,28(6):1250-1260.JI Sui-wang, TANG Yong-jian, HU De-gui, et al. Analysis of Typical Seismic Damages of Highways in Wenchuan Earthquake-induced Hazard Areas in Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering,2009, 28 (6):1250-1260.
    [11] 张斌伟, 严松宏, 杨永东. 山岭隧道横截面抗震分析的近似方法[J]. 公路交通科技, 2012, 29(3):118-123.ZHANG Bin-wei, YAN Song-hong, YANG Yong-dong. Approximate Seismic Analysis Method of Cross-section of Mountain Tunnel[J]. Journal of Highway & Transportation Research & Development, 2012, 29(3):118-123.
    [12] 周佳媚, 袁松, 高波. 小净距隧道地震动力响应下的围岩应力场[J]. 公路交通科技,2012,29(2):92-97. ZHOU Jia-mei, YUAN Song, GAO Bo. Surrounding Rock Stress Field under Earthquake-induced Dynamic Response of Tunnels with Small Spacing[J]. Journal of Highway & Transportation Research & Development,2012,29(2):92-97.
    [13] 胡鸿运,周晓军,汪精河. 顺层岩体隧道地震响应的波动方法研究[J].岩石力学与工程学报,2017,36 (6):1373-1383.HU Hong-yun,ZHOU Xiao-jun,WANG Jing-he. A Wave Numerical Method for Seismic Response of Tunnels in Bedding Strata[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(6):1373-1383.
    [14] THOMSEN L. Weak Elastic Anisotropy [J]. Geophysics,1986, 51(10): 1954-1966.
    [15] WINTERSTEIN D F. Velocity Anisotropy Terminology for Geophysicists[J]. Geophysics,1990,55(8):1070-1088.
    [16] 胡鸿运,周晓军,汪精河.顺层岩体各向异性对隧道地震响应的影响[J].中国铁道科学,2018,39(1):49-58.HU Hong-yun,ZHOU Xiao-jun,WANG Jing-he. Influence of Bedding Rock Mass Anisotropy on Tunnel Seismic Response[J]. China Railway Science,2018,39(1):49-58.
    [17] 何建涛,马怀发,张伯艳,等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报,2010,41(8):960-969.HE Jian-tao,MA Huai-fa,ZHANG Bo-yan,et al. Method and Realization of Seismic Motion Input of Viscous-spring Boundary[J]. Journal of Hydraulic Engineering,2010,41(8):960-969.
    [18] 杜修力,赵密,王进廷. 近场波动模拟的人工应力边界条件[J]. 力学学报,2006,38(1):49-56.DU Xiu-li,ZHAO Mi,WANG Jin-ting. A Stress Artificial Boundary in Fea for Near-field Wave Problem[J]. Chinese Journal of Theoretical and Applied Mechanics,2006,38(1):49-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700