用户名: 密码: 验证码:
外加植物碳源对人工湿地处理海水循环水养殖尾水脱氮性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nitrogen removal performance of artificial wetland with plant carbon source from seawater circulating aquaculture tail water
  • 作者:孙琳琳 ; 宋协法 ; 李甍 ; 黄志涛 ; 董登攀
  • 英文作者:SUN Linlin;SONG Xiefa;LI Meng;HUANG Zhitao;DONG Dengpan;College of Fisheries, Ocean University of China;
  • 关键词:垂直潜流人工湿地 ; 植物碳源 ; 海水循环水养殖尾水 ; 总可溶性氮 ; COD
  • 英文关键词:vertical subsurface flow constructed wetland;;plant carbon source;;seawater recirculating aquaculture tail water;;total soluble nitrogen;;COD
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:中国海洋大学水产学院;
  • 出版日期:2019-06-05 10:45
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:青岛“十三五”海洋经济创新发展示范项目
  • 语种:中文;
  • 页:HJJZ201906017
  • 页数:9
  • CN:06
  • ISSN:11-5591/X
  • 分类号:128-136
摘要
针对人工湿地处理海水循环水养殖尾水因碳源不足引起硝态氮去除效果不佳的问题,通过静态释放实验,比较了玉米秸秆、玉米芯以及芒草在海水中的静态释放特性,探究了酸处理和碱处理对玉米芯释放规律的影响,并采用垂直潜流人工湿地系统研究添加玉米芯和玉米芯浸出液对湿地处理海水循环水养殖尾水脱氮效果的影响。结果表明,3种植物碳源都有可观的COD释放量,玉米芯氮素磷素释放量都较小,更适合作为外加碳源;酸处理和碱处理都能提高植物碳源的碳溶出速率,但碱处理的释放速率更稳定,更适合作为预处理方式;添加玉米芯和玉米芯浸出液湿地对硝态氮的去除率分别提高至90.63%和88.56%,表明添加植物碳源能显著提高海水人工湿地的脱氮效果,并证明以植物碳源浸出液替代植物碳源的有效性与可行性。
        This study is focused on the poor nitrate nitrogen removal by a constructed wetland due to insufficient carbon source in seawater circulating aquaculture tail water. The static release experiments were used to compare the static release characteristics of corn stover, corn cob and Miscanthus in freshly sterilized seawater, and study the effect of acid or alkali treatment on the release rule of corn cob. Then the effects of corn cob or corn cob leachate addition on the denitrification of vertical subsurface flow constructed wetland system were studied when treating simulated seawater circulating aquaculture tail water. The results showed that all the three plant carbon sources could release considerable COD, and corn core was more suitable as an additional carbon source due to its low nitrogen and phosphorus release. Both acid and alkali treatment could raise the dissolution rate of C from plant carbon sources, while a more stable dissolution rate occurred for alkali treatment,and it was more suitable as a pretreatment method. In the case of the accumulation of nitrate nitrogen in the blank control wetland, the addition of corn cob and corn cob leachate in the constructed wetland could lead to the increase of nitrate nitrogen removal rate by 90.63% and 88.56%, respectively. This study also proved that the plant carbon source addition could significantly elevate the nitrogen removal effect of constructed wetland treating seawater, plant leachate carbon source was effective and feasible instead of plant carbon source.
引文
[1]王峰,雷霁霖,高淳仁,等.国内外工厂化循环水养殖研究进展[J].中国水产科学,2013, 20(5):1100-1111.
    [2] MARTINS C I, EDING E H, VERDEGEM M C, et al. New developments in recirculating aquaculture systems in Europe:A perspective on environmental sustainability[J]. Aquacultural Engineering, 2010, 43(3):83-93.
    [3] KAMSTRA A, HEUL J W. The effect of denitrification on feed intake and feed conversion of European Anguilla anguilla[J].Aquaculture and Water, 1998, 26(3):128-129.
    [4] HYRAYAMA K. Influences of nitrate accumulated in culturing water on Octopus vulgari[J]. Nippon Suisan Gakkaishi, 1966,32:105-111.
    [5] HAMLIN H J, MOORE B C, EDWARDSD T M, et al. Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon(Acipenser baeri)in commercial aquaculture[J]. Aquaculture, 2008, 281(V4):118-125.
    [6]崔玉波,尹军,韩相奎,等.间歇式潜流人工湿地中COD、NH4-N动态变化特征[J].环境工程, 2003, 21(3):62-64.
    [7]肖蕾,贺锋,黄丹萍,等.人工湿地反硝化外加碳源研究进展[J].水生态学杂志, 2012, 33(1):139-143.
    [8]周卿伟,祝惠,阎百兴,等.添加填料的人工湿地反硝化过程研究[J].湿地科学, 2017, 15(4):588-594.
    [9] YUE W, YI C, NAN Z, et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurfaceflow constructed wetlands[J]. Bioresource Technology, 2010, 101(19):7286-7292.
    [10]赵联芳,朱伟,高青.补充植物碳源提高人工湿地脱氮效率[J].解放军理工大学学报(自然科学版), 2009, 10(6):644-649.
    [11]晋凯迪.植物碳源调控下水平潜流湿地强化脱氮试验研究[D].郑州:郑州大学, 2016.
    [12]罗鹏,刘忠.木质生物资源的水解[J].林产化学与工业, 2006, 26(2):99-104.
    [13]路鹏,江滔,李国学.木质纤维素乙醇发酵研究中的关键点及解决方案[J].农业工程学报, 2006, 22(9):237-240.
    [14] LI M, LIANG Z, CALLIER M D, et al. Nitrogen and organic matter removal and enzyme activities in constructed wetlands operated under different hydraulic operating regimes[J]. Aquaculture, 2018, 496(7):247-254.
    [15]国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社,2002.
    [16]杨玉婷,何小娟,苏跃龙,等.外加植物碳源强化人工湿地脱氮的研究进展[J].水处理技术, 2015, 41(5):1-4.
    [17]丁怡,王玮,王宇晖,等.水平潜流人工湿地的脱氮机理及其影响因素研究[J].工业水处理, 2015,35(6):6-9.
    [18] SAEED T, SUN G. Enhanced denitrification and organics removal in hybrid wetland columns:Comparative experiments[J].Bioresource Technology, 2011, 102(2):967-974.
    [19]丁怡,宋新山,严登华.补充碳源提取液对人工湿地脱氮作用的影响[J].环境科学学报, 2012, 32(7):1646-1652.
    [20]晋凯迪,于鲁冀,陈涛,等.植物碳源调控对人工湿地脱氮效果的影响[J].环境工程学报, 2016, 10(10):5611-5616.
    [21]李斌,郝瑞霞.固体纤维素类废物作为反硝化碳源滤料的比选[J].环境科学, 2013, 34(4):1428-1434.
    [22] NYBERG U. Full-scale application of nitrogen removal with methanol as carbon source[J]. Water Science&Technology,1992, 26(5/6):1077-1086.
    [23]杨波,杨志恒,胡文容,等.亚硝化细菌处理氨氮废水的研究[J].武汉理工大学学报, 2007, 29(3):63-66.
    [24]陈庆昌,冯爱坤,罗建中.人工湿地脱氮技术研究[J].工业安全与环保, 2008, 34(7):17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700