用户名: 密码: 验证码:
常压条件下NaOH剥离g-C_3N_4及其光催化性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bulk g-C_3N_4 exfoliated by NaOH under normal pressure and its photocatalytic performance
  • 作者:刘晓瑜 ; 杨立荣 ; 吴欣怡 ; 李梦臣 ; 刘志刚 ; 封孝信
  • 英文作者:LIU Xiaoyu;YANG Lirong;WU Xinyi;LI Mengchen;LIU Zhigang;FENG Xiaoxin;Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology;
  • 关键词:g-C_3N_4 ; 氢键 ; 剥离 ; 罗丹明B ; 降解
  • 英文关键词:g-C_3N_4;;hydrogen bond;;exfoliation;;rhodamine B;;degradation
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:华北理工大学材料科学与工程学院河北省无机非金属材料重点实验室;
  • 出版日期:2019-03-31
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.426
  • 基金:唐山市工业废气高效脱硫脱硝基础创新团队资助项目(17130201D)
  • 语种:中文;
  • 页:GNCL201903034
  • 页数:6
  • CN:03
  • ISSN:50-1099/TH
  • 分类号:201-206
摘要
通过热聚合法制备了块状g-C_3N_4,并利用不同浓度的NaOH对块状g-C_3N_4进行常压剥离处理,获得了大比表面积、疏松多孔的g-C_3N_4。对样品进行了XRD、SEM、TEM、BET、PL、FT-IR、UV-Vis光谱多项表征,并进行了降解罗丹明B光催化性能测试。结果显示,随着NaOH溶液浓度的增加,g-C_3N_4疏松程度增加,经过浓度为0.3 mol/L的NaOH处理的g-C_3N_4层间氢键破坏程度大,层内的结构也遭到一定程度的破坏,比表面积明显增大,是块状g-C_3N_4的5.5倍。较大的比表面积有效地增加了对罗丹明B的吸附性,同时经过0.3 mol/L的NaOH处理的g-C_3N_4电子与空穴的复合速率降低,吸附和光催化协同效应使0.3 mol/L NaOH处理过的g-C_3N_4光催化降解罗丹明B的效率较块状的g-C_3N_4有较大程度的提高。
        In order to obtain loose porous g-C_3N_4 with large specific surface area, bulk g-C_3N_4 was prepared by thermal polymerization and treated with different concentrations of NaOH solution under normal pressure. The samples were characterized by XRD, SEM, TEM, BET, PL, FT-IR and UV-Vis spectra, and the photocatalytic performance of degraded rhodamine B was tested. The results showed that the looseness of g-C_3N_4 increased with the increase of alkali concentration. The hydrogen bond between the layers of g-C_3N_4 treated with 0.3 mol/L NaOH was destroyed, and the structure in the layer was also damaged to some extent. The specific surface area increased significantly, which was 5.5 times that of bulk g-C_3N_4. The larger specific surface area effectively increased the adsorption performance of rhodamine B, while the recombination rate electrons and holes in g-C_3N_4 treated by 0.3 mol/L NaOH were reduced. The synergistic effect of adsorption and photocatalysis made the efficiency of photocatalytic degradation of rhodamine B by 0.3 mol/L NaOH treated g-C_3N_4 improve significantly compared to bulk g-C_3N_4.
引文
[1] Wu M, Yan J M, Zhang X, et al. Synthesis of g-C3N4 with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution[J]. Applied Surface Science, 2015, 354: 196-200.
    [2] Li H, Wu X, Yin S, et al. Effect of rutile TiO2 on the photocatalytic performance of g-C3N4/brookite-TiO2-xNy photocatalyst for NO decomposition[J]. Applied Surface Science, 2017, 392:531-539.
    [3] Fan C, Feng Q, Xu G, et al. Enhanced photocatalytic performances of ultrafine g-C3N4 nanosheets obtained by gaseous stripping with wet nitrogen[J]. Applied Surface Science, 2018, 427: 730-738.
    [4] Mamba G, Mishra A K. Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377.
    [5] Akhundi A, Habibi-Yangjeh A. Novel magnetic g-C3N4/Fe3O4/AgCl nanocomposites: Facile and large-scale preparation and highly efficient photocatalytic activities under visible-light irradiation[J]. Materials Science in Semiconductor Processing, 2015, 39:162-171.
    [6] Li J, Zhang M, Li X, et al. Effect of the calcination temperature on the visible light photocatalytic activity of direct contact Z-scheme g-C3N4-TiO2 heterojunction[J]. Applied Catalysis B: Environmental, 2017, 212:106-114.
    [7] Ding W, Liu S, He Z. One-step synthesis of graphitic carbon nitride nanosheets for efficient catalysis of phenol removal under visible light[J]. Chinese Journal of Catalysis, 2017, 38(10):1711-1718.
    [8] Chidhambaram N, Ravichandran K. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications[J]. Materials Letters, 2017, 207:44-48.
    [9] Praus P, Svoboda L, Ritz M, et al. Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide[J]. Materials Chemistry and Physics, 2017, 193:438-446.
    [10] Zhao H, Yu H, Quan X, et al. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation[J]. Applied Catalysis B: Environmental, 2014, 152:46-50.
    [11] Zhao H, Yu H, Quan X, et al. Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation[J]. Rsc Advances, 2014, 4(2):624-628.
    [12] Niu P, Zhang L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22):4763-4770.
    [13] Liang Q, Li Z, Huang Z H, et al. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production[J]. Advanced Functional Materials, 2015, 25(44):6885-6892.
    [14] Xu Y, Xie M, Huang S, et al. High yield synthesis of nano-size g-C3N4 derivatives by a dissolve-regrowth method with enhanced photocatalytic ability[J]. Rsc Advances, 2015, 5(33):26281-26290.
    [15] Sano T, Tsutsui S, Koike K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. Journal of Materials Chemistry A, 2013, 1(21): 6489-6496.
    [16] Xu Y S, Zhang L L, Yin M H, et al. Ultrathin g-C3N4 films supported on attapulgite nanofibers with enhanced photocatalytic performance[J]. Applied Surface Science, 2018, 440: 170-176.
    [17] Zhang Y, Jin Z, Wang G. Charge transfer behaviors over MOF-5@ g-C3N4 with NixMo1-xS2 modification[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9914-9923.
    [18] Cheng J, Hu Z, Lyu K, et al. Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure[J]. Applied Catalysis B: Environmental, 2018, 232: 330-339.
    [19] Shi A, Li H, Yin S, et al. Effect of conjugation degree and delocalized π-system on the photocatalytic activity of single layer g-C3N4[J]. Applied Catalysis B: Environmental, 2017, 218: 137-146.
    [20] Cheng F X, Exfoliation of graphitic carbon nitride and its photocatalytic application[D]. Hangzhou: Zhejiang Sci-Tech University, 2015(in Chinese).程福星. 石墨相氮化碳的剥离及其在光催化中的应用[D].杭州: 浙江理工大学, 2015.
    [21] Yang S, Gong Y, Zhang J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17): 2452-2456.
    [22] Niu P, Zhang L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770.
    [23] Khan A, Alam U, Raza W, et al. One-pot, self-assembled hydrothermal synthesis of 3D flower-like CuS/g-C3N4 composite with enhanced photocatalytic activity under visible-light irradiation[J]. Journal of Physics and Chemistry of Solids, 2018, 115: 59-68.
    [24] Bicalho H A, Lopez J L, Binatti I, et al. Facile synthesis of highly dispersed Fe(Ⅱ)-doped g-C3N4 and its application in Fenton-like catalysis[J]. Molecular Catalysis, 2017, 435: 156-165.
    [25] Xu Y S, Zhang L L, Yin M H, et al. Ultrathin g-C3N4 films supported on Attapulgite nanofibers with enhanced photocatalytic performance[J]. Applied Surface Science, 2018, 440: 170-176.
    [26] Wang Z, Huo Y, Fan Y, et al. Facile synthesis of carbon-rich g-C3N4 by copolymerization of urea and tetracyanoethylene for photocatalytic degradation of Orange II[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358: 61-69.
    [27] Li Y, Ho W, Lyu K, et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets[J]. Applied Surface Science, 2018, 430: 380-389.
    [28] 中国污水处理工程网.罗丹明B废水光催化处理技术[EB/OL](2015-6-28).http://www.dowater.com/jishu/2015-06-28/352561/.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700