用户名: 密码: 验证码:
基于Hilbert-Huang变换的混流泵流动诱导振动试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment of flow induced vibration of mixed-flow pump based on Hilbert-Huang transform
  • 作者:李伟 ; 季磊磊 ; 施卫东 ; 杨勇飞 ; 平元峰 ; 张文全
  • 英文作者:Li Wei;Ji Leilei;Shi Weidong;Yang Yongfei;Ping Yuanfeng;Zhang Wenquan;National Research Center of Pumps,Jiangsu University;
  • 关键词: ; 振动 ; 信号分析 ; 混流泵 ; 空载 ; 尔伯特-黄变换
  • 英文关键词:pumps;;vibrations;;signal analysis;;mixed-flow pump;;unloaded condition;;Hilbert-Huang transform
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:江苏大学国家水泵及系统工程研究中心;
  • 出版日期:2018-01-23
  • 出版单位:农业工程学报
  • 年:2018
  • 期:v.34;No.329
  • 基金:国家自然科学基金项目(51679111、51579118);; 江苏省自然科学基金项目(BK20161472);; 江苏高校优势学科建设工程资助项目(PAPD)
  • 语种:中文;
  • 页:NYGU201802007
  • 页数:8
  • CN:02
  • ISSN:11-2047/S
  • 分类号:55-62
摘要
混流泵水力诱导的机组振动是混流泵运行失稳的重要因素之一,为了研究混流泵水力激振诱导的机组振动情况,基于本特利408数据采集系统,测量获得了空载和负载工况下混流泵泵体和泵体基座不同位置处的振动信号,通过尔伯特-黄变换对原始振动信号进行经验筛分分解,获得了不同模函数分量的频谱分布。研究结果表明,相比空载运行,混流泵负载工况运行时水力诱导的机组振动明显加剧,但在不同方向上,水力激振引起的振动各不相同。X方向上2个工况下的振动频谱分布基本相似,而在Y方向、Z方向和混流泵底座上,负载工况下波形的频带分布变窄,能量分布较为集中,且Z方向的原始振幅要明显大于Y方向,约为Y方向原始振幅的2倍。混流泵负载工况运行时,低频振动占据主要振动能量分布,使得不同模函数分量的主频向低频方向移动,水力诱导混流泵机组的振动以中低频振动为主。该研究可为有效降低或防止混流泵水力诱导的机组振动恶化提供参考。
        The vibration induced by flow is one of the important factors to the instability of the mixed-flow pump.With the increase of the capacity and the size of mixed-flow pumps,the vibration of the hydraulic components attracts more attention from researchers and engineers.In order to study the vibration of mixed-flow pump induced by hydrodynamic force,based on the Bentley 408 data acquisition system,vibration signals in 3 directions(X,Y and Z) on the base under unloaded and designed flow conditions of the mixed-flow pump are tested and then analyzed using Hilbert-Huang transform(HHT).The original vibration signal is decomposed by EMD(empirical mode decomposition) using the Hilbert-Huang transform,and the spectral distribution of the different mode function components is obtained.The decomposed signal contains intrinsic modulus with 11 different orders and one residual.The acquired intrinsic modulus represents vibration signal with different frequencies,except the Intrinsic mode function 11 and the residual,which show no periodic characteristics.The results show that the vibration under loaded condition is significantly increased compared with the unloaded operating condition,but the vibrations caused by the hydraulic excitation differ in different directions.When the mixed-flow pump is working under designed operating condition,the low frequency vibration occupies the main vibration energy distribution,making the main mode of the different mode function components move to the low frequency direction,and the hydraulic induced vibration is dominated by the middle and low frequency vibration.In the X direction,the vibration spectrum distribution is similar in the 2 cases,while in the Y and Z direction and on the base of mixed-flow pump the frequency distribution of the waveform is narrowed and the energy distribution is concentrated under loaded condition.Under both loaded and unloaded conditions,the main frequency of the spectrum moves toward the low frequency region with the increase of the modulus order.The difference of the frequency spectrum under loaded and unloaded conditions is more obvious for the intrinsic modulus with lower order,namely Intrinsic mode function 1-3.Under unloaded condition,frequency spectrum of the Intrinsic mode function 1-3 reaches the highest value near 600 Hz; while under loaded operating condition,the position for the peak values moves from 900 to 300 Hz for the spectrum of the intrinsic modulus of the first 3 orders.For the other intrinsic moduli,the peak of the frequency spectrum is distributed below 200 Hz,which indicates that the vibration induced by flow is mainly composed of low and middle frequency vibrations.Compared with the frequency spectrum of vibration signal under unloaded condition,the distribution of vibration spectrum under loaded operating condition is narrower,and the power distribution of the vibration is more concentrated,indicating that the vibration induced by flow increases the vibration of the pump and the hydraulic vibration makes the main frequency of the pump vibration move toward the low frequency region in the frequency spectrum.In the original spectrum under loaded operating condition,the amplitude of the vibration spectrum is higher in the region of 200-600 Hz,which indicates that the vibration power is high in this frequency section,and the vibration caused by hydraulic force is greater there.According to the original vibration signal on the base of the pump,it was found that in the frequency region from 0 to 400 Hz,the amplitude of the vibration spectrum under loaded operating condition is 2 times higher than that of other frequencies,which indicates that low frequency vibration occupies the vibration on the base of the mixed-flow pump.The research results have important engineering application value and theoretical guidance for effectively reducing or preventing the vibration of mixed-flow pumps.
引文
[1]吕海平.卧式离心泵受力与轴的振动对泵体破坏分析[J].才智,2012,2012(17):49-50.LüHaiping.Failure analysis of horizontal centrifugal pump force and shaft vibration on pump body[J].Intelligence,2012,2012(17):49-50.(in Chinese with English abstract)
    [2]Christopher S,Kumaraswamy S.Study of noise and vibration signal for a radial flow pump during performance test[J].Fluid Mechanics and Fluid Power-Contemporary Research,2017,12:853-861.
    [3]Li W,Shi W,Xu Y,et al.Effects of guide vane thickness on pressure pulsation of mixed-flow pump in pumped-storage power station[J].Journal of Vibroengineering,2013,15(3):1177-1185.
    [4]李伟,季磊磊,施卫东,等.不同流量工况下混流泵压力脉动试验[J].农业机械学报,2016,47(12):70-76.Li Wei,Ji Leilei,Shi Weidong,et al.Experiment on pressure fluctuation in mixed-flow pump under different flow rate conditions[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(12):70-76.(in Chinese with English abstract)
    [5]Li W,Ji L,Shi W,et al.Vibration characteristics of the impeller at multi-conditions in mixed-flow pump under the action of fluid-structure interaction[J].Journal of Vibroengineering,2016,18(5):3213-3224.
    [6]潘罗平,高明.水轮机水力稳定性的分析[J].长春工程学院学报:自然科学版,2002,3(4):41-43.Pan Luoping,Gao Ming.Analysis of hydraulic stability of hydraulic turbine[J].Journal of Changchun Institute of Technology:Natural Science Edition,2002,3(4):41-43.(in Chinese with English abstract)
    [7]陶星明,刘光宁.高比速混流式水轮机的水力稳定性问题[J].大电机技术,2003(4):46-48.Tao Xingming,Liu Guangning.Hydraulic stability problem of high specific speed mixed flow turbine[J].Large motor technology,2003(4):46-48.(in Chinese with English abstract)
    [8]刘丽娜,潘伟峰,麻志成.混流式水轮机低负荷运行水力稳定性的研究[J].水电自动化与大坝监测,2015(2):20-23.Liu Lina,Pan Weifeng,Ma Zhicheng.Study on hydraulic stability of mixed flow turbine at low load[J].Hydropower Automation and Dam Monitoring,2015(2):20-23.(in Chinese with English abstract)
    [9]成立,吴璐璐,刘超.大型轴流泵水力不稳定区研究[J].灌溉排水学报,2010,29(2):102-104.Cheng Li,Wu Lulu,Liu Chao.Study on hydraulic instability zone of large axial flow pump[J].Journal of Irrigation and Drainage,2010,29(2):102-104.(in Chinese with English abstract)
    [10]张松松.小型混流式水轮发电机组振动试验与分析[D].邯郸:河北工程大学,2014.Zhong Songsong.Vibration Test and Analysis of Small Mixed Flow Turbine[D].Handan:Hebei University of Engineering,2014.(in Chinese with English abstract)
    [11]Shi F X,Yang J H,Wang X H.Analysis on characteristic of pressure fluctuation in hydraulic turbine with guide vane[J].International Journal of Fluid Machinery and Systems,2016,9(3):237-244.
    [12]孟龙,刘孟,支发林,等.机械不平衡及轴瓦间隙对水轮机运行稳定性的影响分析[J].机械工程学报,2016,52(3):49-55.Meng Long,Liu Meng,Zhi Faling,et al.Analysis of the effect of mechanical imbalances and bush clearance on the stability of hydraulic turbines[J].Journal of Mechanical Engineering,2016,52(3):49-55.(in Chinese with English abstract)
    [13]李伟,季磊磊,施卫东,等.混流泵非均匀轮缘间隙流场数值计算[J].农业机械学报,2016,47(10):66-72.Li Wei,Ji Leilei,Shi Weidong,et al.Numerical calculation of the flow field in the nonuniform rim clearance of mixed flow pump[J].Transactions of the Chinese Society for Agricultural Machinery 2016,47(10):66-72.(in Chinese with English abstract)
    [14]李伟.导叶式混流泵多工况内部流场的PIV测量[J].农业工程学报,2016,32(24):82-88.Li Wei.PIV measurement of the internal flow field in multiple conditions of guide vane mixed flow pump[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(24):82-88.(in Chinese with English abstract)
    [15]季磊磊,李伟,施卫东,等.导叶式混流泵内部非定常流动特性数值模拟[J].农业机械学报,2016,47(增刊1):155-162,188.Ji Leilei,Li Wei,Shi Weidong,et al.Numerical simulation of unsteady flow in guide vane mixed flow pump[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(Supp.1):155-162,188.(in Chinese with English abstract)
    [16]施卫东,邹萍萍,张德胜,等.高比转速斜流泵内部非定常压力脉动特性[J].农业工程学报,2011,27(4):147-152.Shi Weidong,Zou Pingping,Zhang Deisheng,et al.Unsteady pressure pulsation characteristics in high specific speed slanted flow pump[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2011,27(4):147-152.(in Chinese with English abstract)
    [17]刘建瑞,郑俊峰,付登鹏,等.混流泵径向间隙对内部非定常流场影响的分析[J].流体机械,2014(3):19-23.Liu Jianrui,Zhen Junfemg,Fu Dengpeng,et al.Analysis of the influence of radial clearance on unsteady flow field in mixed flow pump[J].Fluid machinery,2014(3):19-23.(in Chinese with English abstract)
    [18]李伟,季磊磊,施卫东,等.变流量工况对混流泵转子轴心轨迹的影响[J].农业工程学报,2016,32(4):91-97.Li Wei,Ji Leilei,Shi Weidong,et al.Effects of variable flow conditions on rotor axis orbit of mixed flow pump[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(4):91-97.(in Chinese with English abstract)
    [19]Wang K,Liu H,Zhou X,et al.Experimental research on pressure fluctuation and vibration in a mixed flow pump[J].Journal of Mechanical Science and Technology,2016,30(1):179-184.
    [20]薛延刚,罗兴錡,王瀚,等.基于改进HHT方法提取水轮机动态特征信息研究[J].水力发电学报,2011,30(4):214-221.Xue Yangang,Luo Xingqi,Wang Han,et al.Study on dynamic feature extraction of hydraulic turbine based on improved HHT method[J].Journal of Hydroelectric Power Generation,2011,30(4):214-221.(in Chinese with English abstract)
    [21]梁兴,刘梅清,刘志勇,等.立式混流泵异常振动测试分析[J].排灌机械工程学报,2013,31(5):373-378.Liao Xing,Liu Meiqing,Liu Zhiyong,et al.Test and analysis of abnormal vibration of vertical mixed flow pump[J].Drainage and Irrigation Machinery Engineering,2013,31(5):373-378.(in Chinese with English abstract)
    [22]杨国安,王泽栋.基于改进尔伯特-黄的泵阀故障诊断新方法[J].北京化工大学学报:自然科学版,2008,35(4):81-85.Yang Guoan,Wang Zeidong.A new method for fault diagnosis of pump valve based on improved Hilbert-Huang[J].Journal of Beijing University of Chemical Technology:Natural Science Edition,2008,35(4):81-85.(in Chinese with English abstract)
    [23]Li W,Zhou L,Shi W,et al.PIV experiment of the unsteady flow field in mixed-flow pump under part loading condition[J].Experimental Thermal and Fluid Science,2017,83(2017):191-199.
    [24]李伟,季磊磊,施卫东,等.混流泵起动过程转子轴心轨迹的试验研究[J].机械工程学报,2016,52(22):168-177.Li Wei,Ji Leilei,Shi Weidong,et al.Experimental study on the rotor axis orbit in the starting process of mixed flow pump[J].Journal of Mechanical Engineering,2016,52(22):168-177.(in Chinese with English abstract)
    [25]Zhu K P,Wong Y S,Hong G S.Wavelet analysis of sensor signals for tool condition monitoring:A review and some new results[J].International Journal of Machine Tools&Manufacture,2009,49(2009):537-553.
    [26]Zhang Y,Tang B,Xiao X.Time-frequency interpretation of multi-frequency signal from rotating machinery using an improved Hilbert–Huang transform[J].Measurement,2016,82(2016):221-239.
    [27]Interpretation of mechanical signals using an improved Hilbert–Huang transform[J].Mechanical Systems&Signal Processing,2008,22(5):1061-1071.
    [28]Babu T R,Srikanth S,Sekhar A S.Hilbert–Huang transform for detection and monitoring of crack in a transient rotor[J].Mechanical Systems&Signal Processing,2008,22(4):905-914.
    [29]刘美汝.基于HHT的主泵飞轮振动监测系统研究[D].哈尔滨:哈尔滨工程大学,2015.Liu Meiru.Research on the Vibration Monitoring System of the Main Pump Flywheel based on HHT[D].Harbin:Harbin Engineering University,2015.(in Chinese with English abstract)
    [30]王若.火箭发动机涡轮泵实时故障检测方法研究[D].成都:电子科技大学,2013.Wang Ruo.Research on Real Time Fault Detection Method for Turbopump of Rocket Engine[D].Chengdu:University of Electronics Technology,2013.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700